Développements asymptotiques raccordés et développement multi-échelle, quelles différences ?

G. VIAL

IRMAR, ENS de Cachan, antenne de Bretagne

avec S. Tordeux et M. Dauge

 $2^{\rm e}$ journée d'équipe d'analyse numérique

Rennes, 25 octobre 2007

Perturbations singulières

Un modèle académique

Traditionnellement, 2 approches :

- ◇ Développement asymptotique multi-échelle (MSE),
- ♦ Développements asymptotiques raccordés (MAE).

Développement asymptotique multi-échelle

- ▶ approximation globale de u_{ε} sur [0, L],
- superposition de 2 développements :
 - l'un en variable physique/lente x,
 - l'autre en variable dilatée/rapide $y = x/\varepsilon$.
- utilisation de fonctions de troncature.

Le développement est valide partout, les termes coexistent dans la zone $\operatorname{supp} \chi \cap \operatorname{supp} \zeta(\frac{\cdot}{\varepsilon}).$

Développement asymptotique multi-échelle

$$u_{\varepsilon}(x) \simeq \zeta(\frac{x}{\varepsilon}) \sum_{k \ge 0} \delta_k(\varepsilon) u^k(x) + \chi(x) \sum_{k \ge 0} \delta'_k(\varepsilon) U^k(\frac{x}{\varepsilon})$$

Avantages

- ▶ fournit une approximation de u_{ε} sur [0, L] tout-entier,
- permet l'obtention d'estimations optimales du reste,
- méthode constructive rigoureuse.

Inconvénients

les termes u^k et U^k ne sont pas intrinsèques, mais dépendent de ζ et χ .

Références

- Maz'ya, Nazarov, Plamenevskij 79,
- Caloz, Costabel, Dauge, Bendali, Nicaise, Vial, etc.

Développements asymptotiques raccordés

Deux développements :

$$u_{\varepsilon}(x) \simeq \sum_{k \ge 0} \delta_k(\varepsilon) v^k(x)$$
 loin de 0 , (régulier, extérieur)

$$u_{\varepsilon}(x) \simeq \sum_{k \ge 0} \delta'_k(\varepsilon) V^k(\frac{x}{\varepsilon})$$
 proche de 0 , (local, intérieur)

Aucun des 2 n'est valide sur [0, L],

Il y a en général chevauchement dans une région de transition, dans laquelle ils doivent être raccordés.

Développements asymptotiques raccordés

$$u_{\varepsilon}(x) \simeq \begin{cases} \sum_{k \ge 0} \delta_k(\varepsilon) v^k(x) & \text{ loin de } 0, \\ \\ \sum_{k \ge 0} \delta'_k(\varepsilon) V^k(\frac{x}{\varepsilon}) & \text{ proche de } 0. \end{cases}$$

Avantages

- ▶ construction intrinsèques des termes v^k et V^k ,
- méthode largement usitée dans les applications.

Inconvénients

- justification parfois peu convaincante des conditions de raccord,
- pas d'estimations immédiates du reste.

Références

- Van-Dyke 75, Leguillon-Sanchez-Palencia 87, Il'lin 92,
- ► Joly-Tordeux 06.

Comparaison MSE/MAE dans un cas modèle

Plan de l'exposé

- I. Le problème du "coin arrondi"
- II. MSE : dérivation des termes et estimations
- III. MAE : dérivation des termes et estimations
- IV. Comparaison des développements

Rappel sur la théorie des coins

$$egin{array}{rcl} -\Delta u_0&=&f\;\; {
m dans}\;\Omega_0,\ u_0&=&0\;\; {
m sur}\;\partial\Omega_0,\ {
m avec}\; {
m supp}\; f\subset\subset\Omega_0. \end{array}$$

Théorème. [cf. Kondrat'ev 67, Grisvard 85]

$$u_0 = \sum_{k=1}^n c_{k\lambda} \,\mathfrak{s}^{k\lambda} + u_{0,n},$$

avec $\lambda=\pi/\alpha$, et

- $c_{k\lambda} \in \mathbb{R}$, coefficients de singularité,
- $\mathbf{s}^{k\lambda} = r^{k\lambda} \sin(k\lambda\theta)$, fonction singulière,
- $u_{0,n} \in \mathrm{H}^{(n+1)\lambda-0}$, partie régulière.

$$\begin{array}{l} \operatorname{\mathsf{Remarque.}}\\ \bullet \ \operatorname{si} \alpha = \pi, \operatorname{c'est} \operatorname{Taylor} !\\ \bullet \ \operatorname{Si} \alpha > \pi, s^\lambda \notin \operatorname{H}^2(\Omega_0),\\ \bullet \ \operatorname{si} \alpha < \pi, s^\lambda \in \operatorname{H}^2(\Omega_0). \end{array}$$

Le problème du coin arrondi

Question : que se passe-t-il si on régularise le coin à l'échelle ε ?

- ▶ u_{ε} est complètement régulier... mais doit être proche de u_0 ;
- comment apparaissent les singularités à la limite ?

Description géométrique

 Ω_0 coïncide avec K à l'origine (i.e. $|x| < r_*$).

 ω coı̈ncide avec K à l'infini (i.e. $|y|>r^{\ast}).$

$$\begin{split} & \Omega_{\varepsilon} = \left\{ x \in \Omega_{0} ; \ |x| > \varepsilon r_{*} \right\} \cup \left\{ x \in \varepsilon \omega ; \ |x| < r^{*} \right\}, \\ & \Omega_{\varepsilon} \to \Omega_{0} \text{ quand } \varepsilon \to 0, \\ & \frac{\Omega_{\varepsilon}}{\varepsilon} \to \omega \text{ quand } \varepsilon \to 0, \end{split}$$

Autres géométries possibles

On peut "rogner" le coin de diverses manières...

On peut prendre autre chose qu'un secteur pour K...

Autres géométries possibles

On peut "rogner" le coin de diverses manières...

On peut changer K...

Qui peut le plus, peut le moins...

Limitation : les motifs considérés sont autosimilaires.

Construction des premiers termes (1/4)

$$\begin{split} \Omega_{\varepsilon} &= \left\{ x \in \Omega_0 \; ; \; |x| > \varepsilon r_* \right\} \cup \left\{ x \in \varepsilon \omega \; ; \; |x| < r^* \right\}, \\ (\mathbf{P}_{\varepsilon}) &\qquad \begin{cases} -\Delta u_{\varepsilon} &= f \quad \mathrm{dans} \; \Omega_{\varepsilon}, \\ u_{\varepsilon} &= 0 \quad \mathrm{sur} \; \partial \Omega_{\varepsilon}. \end{cases} \end{split}$$

- ▶ Un bon début de développement semble être u_0 , solution de (P₀),
- ▶ mais u_0 n'est pas définie sur Ω_{ε} !
- ► on tronque avec ζ : $\zeta(y) = 0$ si $|y| < r_*$ et 1 si $|y| > 2r_*$.

$$u_{\varepsilon}(x) = \zeta(\frac{x}{\varepsilon})u_0(x) + r_{\varepsilon}^0(x).$$

▶ il faut évaluer le reste r_{ε}^{0} ...

Construction des premiers termes (2/4)

Par construction, r_{ε}^{0} vérifie le problème

$$\begin{cases} -\Delta r_{\varepsilon}^{0} = \varphi_{\varepsilon}^{0} \text{ dans } \Omega_{\varepsilon}, \\ r_{\varepsilon}^{0} = 0 \text{ sur } \partial \Omega_{\varepsilon}, \end{cases}$$

avec

$$\varphi_{\varepsilon}^{0}(x) = f(x) - \Delta_{x} \left[\zeta(\frac{x}{\varepsilon}) u_{0}(x) \right]$$
$$= -\varepsilon^{-2} \Delta_{y} \zeta(\frac{x}{\varepsilon}) u_{0}(x) - 2\varepsilon^{-1} \nabla_{y} \zeta(\frac{x}{\varepsilon}) \cdot \nabla_{x} u_{0}(x)$$

▶ $\operatorname{supp}(\varphi_{\varepsilon}^{0})$ est contenu dans la couronne $\varepsilon r_{*} < |x| < 2\varepsilon r_{*}$.

> On va exploiter le scaling $y = \frac{x}{\varepsilon}$ en développant u_0 en fonctions homogènes :

$$u_0(x) = b_{\lambda}^0 \mathfrak{s}^{\lambda}(x) + b_{2\lambda}^0 \mathfrak{s}^{2\lambda} + \cdots$$

Construction des premiers termes (3/4)

En utilisant $u_0(x) = b_\lambda^0 \mathfrak{s}^\lambda(x) + b_{2\lambda}^0 \mathfrak{s}^{2\lambda} + \cdots$, on obtient

$$\begin{split} \varphi_{\varepsilon}^{0}(x) &= -\varepsilon^{-2} \Delta_{y} \zeta(\frac{x}{\varepsilon}) u_{0}(x) - 2\varepsilon^{-1} \nabla_{y}(\frac{x}{\varepsilon}) \cdot \nabla_{x} u_{0}(x) \\ &= -\varepsilon^{-2} \Delta_{y} \zeta(y) u_{0}(\varepsilon y) - 2\varepsilon^{-1} \nabla_{y} \zeta(y) \cdot \nabla_{x} u_{0}(\varepsilon y) \\ &= -\varepsilon^{\lambda-2} b_{\lambda}^{0} \left[\Delta_{y}, \zeta \right] \mathfrak{s}^{\lambda}(y) - \varepsilon^{2\lambda-2} b_{2\lambda}^{0} \left[\Delta_{y}, \zeta \right] \mathfrak{s}^{2\lambda}(y) + \cdots \end{split}$$

- le terme dominant ne fait intervenir que la variable y,
- ▶ on introduit donc le *profil* U^{λ} , solution de

$$\begin{cases} -\Delta U^{\lambda} &= b^{0}_{\lambda}[\Delta_{y},\zeta]\mathfrak{s}^{\lambda} & \text{dans } \omega, \\ U^{\lambda} &= 0 & \text{sur } \partial \omega. \end{cases}$$

Lemme. Un tel U^{λ} existe, est unique et on a le développement à l'infini $U^{\lambda}(y) = B^{\lambda}_{\lambda} \mathfrak{s}^{-\lambda}(y) + B^{\lambda}_{2\lambda} \mathfrak{s}^{-2\lambda}(y) + \cdots$

Construction des premiers termes (4/4)

Un nouveau début de développement s'écrit

$$u_{\varepsilon}(x) = \zeta(\frac{x}{\varepsilon})u_0(x) + \chi(x)\varepsilon^{\lambda}U^{\lambda}(\frac{x}{\varepsilon}) + r_{\varepsilon}^{\lambda},$$

 $\operatorname{avec} \chi(x) = 1 \text{ si } |x| < r^* \text{ et } 0 \text{ si } |x| > 2r^*.$

A-t-on avancé ? Oui, car

$$\Delta r_{\varepsilon}^{\lambda} = [\Delta_x, \zeta(\frac{\cdot}{\varepsilon})] u_0(x) - \varepsilon^{\lambda-2} \underbrace{\chi(x)}_{=1} b_{\lambda}^0 [\Delta_y, \zeta] \mathfrak{s}^{\lambda}(\frac{x}{\varepsilon}) + \varepsilon^{\lambda} [\Delta, \chi] U^{\lambda}(\frac{x}{\varepsilon})$$

$$\diamond \ [\Delta_x, \zeta(\frac{\cdot}{\varepsilon})]u_0(x) = \sum_{p\geq 1} \varepsilon^{p\lambda-2} b_{p\lambda}^0 \left[\Delta_y, \zeta\right] \mathfrak{s}^{p\lambda}(y) + \cdots,$$

$$\diamond \ \varepsilon^{\lambda}[\Delta, \chi] U^{\lambda}(\frac{x}{\varepsilon}) = \varepsilon^{2\lambda} B^{\lambda}_{\lambda} \varphi^{\lambda}(x) + \cdots,$$

donc $\Delta r_{\varepsilon}^{\lambda} = \varepsilon^{2\lambda-2} b_{2\lambda}^{0} \left[\Delta_{y}, \zeta \right] \mathfrak{s}^{2\lambda} \left(\frac{x}{\varepsilon} \right) + \varepsilon^{2\lambda} B_{\lambda}^{\lambda} \varphi^{\lambda}(x) + \cdots$

Le développement complet

Théorème. u_{ε} admet le développement

$$u_{\varepsilon}(x) = \zeta(\frac{x}{\varepsilon}) \sum_{\ell=0}^{n-1} \varepsilon^{\ell\lambda} u^{\ell\lambda}(x) + \chi(x) \sum_{\ell=1}^{n-1} \varepsilon^{\ell\lambda} U^{\ell\lambda}(\frac{x}{\varepsilon}) + r_{\varepsilon}^{(n-1)\lambda}(x),$$

avec

$$||\zeta(\frac{\cdot}{\varepsilon})u^{\ell\lambda}||_{\mathrm{H}^{1}(\Omega_{\varepsilon})} \leq C \quad \text{et} \quad ||\chi U^{\ell\lambda}(\frac{\cdot}{\varepsilon})||_{\mathrm{H}^{1}(\Omega_{\varepsilon})} \leq C,$$

► et l'estimation optimale du reste $||r_{\varepsilon}^{(n-1)\lambda}||_{\mathrm{H}^{1}(\Omega_{\varepsilon})} \leq C\varepsilon^{n\lambda}$.

Preuve. Par construction, $\|\Delta r_{\varepsilon}^{(n-1)\lambda}\|_{L^{2}(\Omega_{\varepsilon})} \leq C\varepsilon^{n\lambda-1}$. À l'aide d'une estimation *a priori* sur (P_{ε}) **indépendante de** ε , on obtient

$$\|r_{\varepsilon}^{(n-1)\lambda}\|_{\mathrm{H}^{1}(\Omega_{\varepsilon})} \leq C\varepsilon^{n\lambda-1},$$

qu'on améliore en écrivant $r_{\varepsilon}^{(n-1)\lambda} = r_{\varepsilon}^{(n+1)\lambda} + \mathcal{O}(\varepsilon^{n\lambda}).$

Construction des termes

$$u_{\varepsilon}(x) \simeq \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x)$$
 loin de 0 ,

$$u_{arepsilon}(x)\simeq \sum_{\ell\geq 0}arepsilon^{\ell\lambda}V^{\ell\lambda}(rac{x}{arepsilon})$$
 proche de $0,$

> On injecte les développements dans (P_{ε}), à la limite $\varepsilon \to 0$, on obtient

$$\begin{cases} \Delta v^{\ell\lambda} &= f\delta_{\ell}^{0} \quad \operatorname{dans} \Omega_{0}, \\ v^{\ell\lambda} &= 0 \quad \operatorname{sur} \partial \Omega_{0}. \end{cases} \begin{cases} \Delta V^{\ell\lambda} &= 0 \quad \operatorname{dans} \omega, \\ V^{\ell\lambda} &= 0 \quad \operatorname{sur} \partial \omega. \end{cases}$$

- On ne peut imposer à v^{\ellux} et v^{\ellux} d'être variationnels, sinon ils seraient nuls ! on doit permettre à v^{\ellux} d'exploser en 0 et v^{\ellux} à l'infini.
- Les 2 développements doivent être raccordés...

Conditions de raccord (1/2)

Les différents termes se développent en fonctions singulières

$$v^{\ell\lambda} = \sum_{p\geq 1} \left[a_{p\lambda}^{\ell\lambda} \mathfrak{s}^{-p\lambda} + b_{p\lambda}^{\ell\lambda} \mathfrak{s}^{\ell\lambda} \right],$$
$$V^{\ell\lambda} = \sum_{p\geq 1} \left[A_{p\lambda}^{\ell\lambda} \mathfrak{s}^{p\lambda} + B_{p\lambda}^{\ell\lambda} \mathfrak{s}^{-\ell\lambda} \right]$$

On souhaite faire coïncider les deux développements dans une zone où

$$|x| \ll 1$$
 et $|\frac{x}{\varepsilon}| \gg 1$.

$$\left(\begin{array}{l} \sum_{\ell \ge 0} \varepsilon^{\ell\lambda} v^{\ell\lambda}(x) = \sum_{\ell \ge 0} \varepsilon^{\ell\lambda} \sum_{p \ge 1} \left[a_{p\lambda}^{\ell\lambda} \mathfrak{s}^{-p\lambda}(x) + b_{p\lambda}^{\ell\lambda} \mathfrak{s}^{\ell\lambda}(x) \right] \\ \sum_{\ell \ge 0} \varepsilon^{\ell\lambda} V^{\ell\lambda}(\frac{x}{\varepsilon}) = \sum_{\ell \ge 0} \varepsilon^{\ell\lambda} \sum_{p \ge 1} \left[A_{p\lambda}^{\ell\lambda} \mathfrak{s}^{p\lambda}(\frac{x}{\varepsilon}) + B_{p\lambda}^{\ell\lambda} \mathfrak{s}^{-\ell\lambda}(\frac{x}{\varepsilon}) \right] \end{array} \right)$$

Conditions de raccord (2/2)

On égale les deux expressions

$$\begin{cases} \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x) = \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} \sum_{p \ge 1} \left[a_{p\lambda}^{\ell \lambda} \mathfrak{s}^{-p\lambda}(x) + b_{p\lambda}^{\ell \lambda} \mathfrak{s}^{\ell \lambda}(x) \right] \\ \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} V^{\ell \lambda}(\frac{x}{\varepsilon}) = \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} \sum_{p \ge 1} \left[A_{p\lambda}^{\ell \lambda} \mathfrak{s}^{p\lambda}(\frac{x}{\varepsilon}) + B_{p\lambda}^{\ell \lambda} \mathfrak{s}^{-\ell \lambda}(\frac{x}{\varepsilon}) \right] \end{cases}$$

en utilisant l'homogénéité des fonctions singulières : $\mathfrak{s}^{\mu}(\frac{x}{\varepsilon}) = \varepsilon^{-\mu} \mathfrak{s}^{\mu}(x)$,

$$\begin{cases} a_{p\lambda}^{\ell\lambda} &= B_{p\lambda}^{(\ell-p)\lambda} \quad \text{(0 si } \ell < p\text{),} \\ \\ A_{p\lambda}^{\ell\lambda} &= b_{p\lambda}^{(\ell-p)\lambda} \quad \text{(0 si } \ell < p\text{).} \end{cases}$$

Principe de raccord de Van-Dyke : "the m-term inner expansion of (the n-term outer expansion) = the n-term outer expansion of (the m-term inner expansion)."

Estimation d'erreur

> Pour obtenir une estimation d'erreur, il faut une **approximation globale**...

▶ soit η_{ε} telle que $\eta_{\varepsilon} \to 0$ et $\frac{\eta_{\varepsilon}}{\varepsilon} \to +\infty$, ψ une troncature et

$$\hat{u}_{\varepsilon}^{n\lambda}(x) = \psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell=0}^{n} \varepsilon^{\ell\lambda} v^{\ell\lambda}(x) + \left(1 - \psi(\frac{x}{\eta_{\varepsilon}})\right) \sum_{\ell=0}^{n} \varepsilon^{\ell\lambda} V^{\ell\lambda}(\frac{x}{\varepsilon}).$$

► Theorème.
$$\|u_{\varepsilon} - \hat{u}_{\varepsilon}^{n\lambda}(x)\|_{\mathrm{H}^{1}(\Omega_{\varepsilon})} \leq c \left(\eta_{\varepsilon}^{(n+1)\lambda} + (\frac{\varepsilon}{\eta_{\varepsilon}})^{(n+1)\lambda}\right).$$

▶ l'estimation est optimale pour $\eta_{\varepsilon} = \sqrt{\varepsilon}$, l'erreur est alors en $\varepsilon^{(n+1)\lambda/2}$.

► on peut retrouver les erreurs optimales en $\varepsilon^{(n+1)\lambda}$ localement dans chaque zone (proche de 0 et loin de 0).

Comparaison des développements (1/2)

$$(\mathsf{MSE}) \ \underline{u}_{\varepsilon}(x) = \zeta(\frac{x}{\varepsilon}) \sum_{\ell=0}^{n-1} \varepsilon^{\ell\lambda} u^{\ell\lambda}(x) + \chi(x) \sum_{\ell=1}^{n-1} \varepsilon^{\ell\lambda} U^{\ell\lambda}(\frac{x}{\varepsilon}) + r_{\varepsilon}^{(n-1)\lambda}(x)$$

$$(\mathsf{MAE}) \ u_{\varepsilon}(x) \simeq_0 \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x) \quad \text{et} \quad u_{\varepsilon}(x) \simeq_{\infty} \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} V^{\ell \lambda}(\frac{x}{\varepsilon}).$$

À l'aide des estimations locales optimales,

$$u^{\ell\lambda} = v^{\ell\lambda}$$
 loin de 0 ,

$$U^{\ell\lambda} ~=~ V^{\ell\lambda}$$
 près de $0.$

► En fait, on peut montrer les relations

$$u^{\ell\lambda}(x) = v^{\ell\lambda}(x) - \chi(x) \sum_{p=1}^{\ell-1} a_{p\lambda}^{\ell\lambda} \mathfrak{s}^{-p\lambda}(x),$$
$$U^{\ell\lambda}(y) = V^{\ell\lambda} - \zeta(y) \sum_{p=1}^{\ell} A_{p\lambda}^{\ell\lambda} \mathfrak{s}^{p\lambda}(y).$$

Comparaison des développements (2/2)

Conclusions

Les deux développements fournissent les mêmes informations locales,

- ▶ l'obtention d'estimations pour MAE est une technique MSE...!
- on peut passer d'un développement à l'autre en ajoutant/retranchant des fonctions singulières,
- le choix est une question de goût...

$$\hat{u}_{\varepsilon} \simeq \psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x) + \left(1 - \psi(\frac{x}{\eta_{\varepsilon}})\right) \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} V^{\ell \lambda}(\frac{x}{\varepsilon}).$$

On injecte l'expression $v^{\ell\lambda}(x) = u^{\ell\lambda}(x) + \chi(x) \sum_{p=1}^{\ell-1} a_{p\lambda}^{\ell\lambda} \mathfrak{s}^{-p\lambda}(x),$

d'où
$$\psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \geq 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x)$$

$$=\psi(\frac{x}{\eta_{\varepsilon}})\sum_{\ell\geq=0}\varepsilon^{\ell\lambda}u^{\ell\lambda}(x)+\psi(\frac{x}{\eta_{\varepsilon}})\chi(x)\sum_{\ell\geq0}\sum_{p=1}^{\ell-1}\varepsilon^{\lambda\ell}a_{p\lambda}^{\ell\lambda}\mathfrak{s}^{-p\lambda}(x)$$

$$\hat{u}_{\varepsilon} \simeq \psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x) + \left(1 - \psi(\frac{x}{\eta_{\varepsilon}})\right) \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} V^{\ell \lambda}(\frac{x}{\varepsilon}).$$

On injecte l'expression $v^{\ell\lambda}(x) = u^{\ell\lambda}(x) + \chi(x) \sum_{p=1}^{\ell-1} a_{p\lambda}^{\ell\lambda} \mathfrak{s}^{-p\lambda}(x),$

d'où
$$\psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \geq 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x)$$

$$=\psi(\frac{x}{\eta_{\varepsilon}})\sum_{\ell\geq=0}\varepsilon^{\ell\lambda}u^{\ell\lambda}(x)+\psi(\frac{x}{\eta_{\varepsilon}})\chi(x)\sum_{\ell\geq0}\sum_{p=1}^{\ell-1}\varepsilon^{\lambda(\ell-p)}a_{p\lambda}^{\ell\lambda}\mathfrak{s}^{-p\lambda}(\frac{x}{\varepsilon})$$

$$\hat{u}_{\varepsilon} \simeq \psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x) + \left(1 - \psi(\frac{x}{\eta_{\varepsilon}})\right) \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} V^{\ell \lambda}(\frac{x}{\varepsilon}).$$

On injecte l'expression $v^{\ell\lambda}(x) = u^{\ell\lambda}(x) + \chi(x) \sum_{p=1}^{\ell-1} a_{p\lambda}^{\ell\lambda} \mathfrak{s}^{-p\lambda}(x),$

d'où
$$\psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \geq 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x)$$

$$= \psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \ge =0} \varepsilon^{\ell\lambda} u^{\ell\lambda}(x) + \psi(\frac{x}{\eta_{\varepsilon}}) \chi(x) \sum_{j \ge 0} \sum_{p \ge 1} \varepsilon^{\lambda j} a_{p\lambda}^{(j+p)\lambda} \mathfrak{s}^{-p\lambda}(\frac{x}{\varepsilon})$$

$$\hat{u}_{\varepsilon} \simeq \psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x) + \left(1 - \psi(\frac{x}{\eta_{\varepsilon}})\right) \sum_{\ell \ge 0} \varepsilon^{\ell \lambda} V^{\ell \lambda}(\frac{x}{\varepsilon}).$$

On injecte l'expression $v^{\ell\lambda}(x) = u^{\ell\lambda}(x) + \chi(x) \sum_{p=1}^{\ell-1} a_{p\lambda}^{\ell\lambda} \mathfrak{s}^{-p\lambda}(x)$,

d'où
$$\psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \geq 0} \varepsilon^{\ell \lambda} v^{\ell \lambda}(x)$$

$$= \psi(\frac{x}{\eta_{\varepsilon}}) \sum_{\ell \ge =0} \varepsilon^{\ell\lambda} u^{\ell\lambda}(x) + \psi(\frac{x}{\eta_{\varepsilon}}) \chi(x) \sum_{j \ge 0} \sum_{p \ge 1} \varepsilon^{\lambda j} \underbrace{a_{p\lambda}^{(j+p)\lambda}}_{=B_{p\lambda}^{\ell\lambda}} \mathfrak{s}^{-p\lambda}(\frac{x}{\varepsilon})$$

soit une contribution en variable rapide y.