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The Vlasov-Poisson models

The N-body problem

@ Newton's equations for N interacting bodies

)'(,-(t):v,- Zvv X/ _XJ( ))

@ Newton or Coulomb potential

1
V(r)=+-.
(r) ==+
@ For N large, a statistical description is more appropriate :

Distribution function of bodies : f(t,x, v).



The Vlasov-Poisson models

The classical Vlasov-Poisson equation

Otf +v-Vyf —Vyor -V, f=0, f(t=0,x,v)=fo(x,v)

R [X =yl
Poisson equation :  Ad¢r = vpr.

or(t,x) = 477r/ pr(t.y) dy, pr(t,x)= /R3 f(t,x,v)dv.

@ Collisionless gravitational systems, v = +1. : galaxies, star
clusters, etc.

@ Plasma case , v = —1. : charged particles with Coulomb
interactions.



The Vlasov-Poisson models

Relativistic effects

— Relativistic VP : replace v by : Rein-Hadzic,

L-Méhats-Raphaél, Rigault.

v
\/ 1+]|v|?

- VIasov—Manev : replace the interaction potential Ixiiy\ by

=y y‘ + y|2 L-Méhats-Rigault.

@ Vlasov-Einstein : Couple Vlasov with relativistic metrics,
Einstein equations : Rendall, Andreasson, Rein, ...



The Vlasov-Poisson models

Basic properties

o Conservation of the energy : H(f) = Ejn(f) — vEpot(f)
1

1
Ein(f) = = - ]v\2fdxdv, Epot(f) = 5 /R3 \fobf\zdx

e Conservation of the Casimir functionals / G(f)dxdv.
R6
@ Scaling symmetry : f solution — %f (ﬁ, §,/Lv) solution
too.
@ In the case of spherically symmetric solutions
f(t,|x],|v],x - v), the angular momentum [ps |x x v|*fdxdv is
also conserved.



Stability of steady states

A class of steady states : The spherical models

Spherically symmetric solutions f := f(|x/|, |v|,x - v) to

V- Vif — Vios - Vo f =0.

@ Isotropic galactic models :
f(x,v)=F (2 +<Z5f(X)> :

@ Anisotropic models :

vI?

a&nF<2+@@prvﬂ.

In fact the Jeans theorem ensures that all spherically
symmetric steady states are of this form
(Batt-Faltenbacher-Horst 86) :



Stability of steady states

Stability of steady states

SPHERICAL PERTURBATIONS

All anisotropic steady states

vI?

Q(x,v)=F <2 + ¢q(x), [x x v|2>

which are decreasing functions of the microscopic energy are
stable under spherical perturbations.

@ Proved in ML-Méhats-Raphaél, 2011.

@ Optimal : Non spherical perturbations may give instabilities,
Binney-Tremaine.



Stability of steady states

Stability of steady states

GENERAL PERTURBATIONS

All spherically symmetric steady states depending on the energy
only
v[?

Qxv) = F (15 + 6o

which are decreasing functions of the microscopic energy are
stable under general perturbations. Proved in ML, F. Méhats, P.
Raphaél 2012.

A different important context : If periodic domain in space :
Homogeneous steady states :

f(x,v) = go(|v])-

Asymptotic stability under Penrose conditions : Landau damping,
Mouhot-Villani.



Stability of steady states

Related works

@ Physics literature : Gardner, Antonov, Lynden-Bell (60'),
Doremus-Baumann-Feix (1970'), Kandrup-Signet (1980’),
Wiechen, Aly, Perez (1990') ..., Binney-Tremaine.

Linear stability and formal approaches

@ Mathematics literature : Two last decades : Wolansky, Guo,
Rein, Dolbeault, Lin, Hadzic, Sanchez, Soler,
L-Méhats-Raphél ...

Non linear stability of Minimizers :

Minimize H(f), with constraints ||f|;x = My, |j(f)|;x = M;.

Not sufficient.



Stability of steady states

Statement of the stability result

(i) Q(x,v)=F (@ + ¢Q(x)> is C° and compactly supported.
(i) Fis C! on]— 00, e[ with F/ < 0 and, on [eg, +o0[, F(e) = 0.

Theorem (L, Méhats, Raphaél. 2012)

Orbital stability of Q. For all ¢ > 0, for all M > 0, there exists
n > 0 such that the following holds true. Let fy € L' N L>, with
fo > 0 and |v|*fy € L', be such that

Ifo = Qller <, H(fo) <H(Q)+ 7 [olle < (@l + M,

then there exists a translation shift z(t) such that the
corresponding weak solution f(t) to VP satisfies : V't > 0,

H(l =+ ‘V|2)(f(t7xa V) - Q(X - Z(t), V)HLl(]R6) < €.




Stability of steady states

Equimeasurability and Schwarz rearrangement

e Equimeasurability : consider the set Eq(Q) of nonnegative
functions f € L1 N L that are equimeasurable with Q :

/G(f(x, v))dxdv = / G(Q(x,v))dxdv, VG
or

meas{f(x,v) > A} = meas{Q(x,v) > A}, VA >0.

e The standard Schwarz symmetrization. Let f € L'(RY),
then there exists a unique nonincreasing function * € L}(R.)
such that *(|x|) is equimeasurable with f.

o if f is a solution of the Vlasov system then :

F(£)* = £(0)".



Stability of steady states

Two main steps in the original proof

@ Reduce the Hamiltonian to a functional of ¢ only :

H(F) = H(Q) = T (¢r) — T(dqQ) — ClIf" — Q|1
and get Local quantitative control of the potential :
inf, [ Vor~Voo(-~2)|E < CIUH ~ H(Q) + I = @"lu]

For all f € £ such that ¢r is in a neighborhood U of ¢¢.

@ Local compactness of the full distribution function :
Let f, be any sequence in the energy space such that ¢¢, is in
U. Assume that

£ — Q" in L, H(f,) — H(Q).
Then there exists a sequence z, € R3 such that

(L + [v2)(Falx, v) = Q(x = 2o, V) 11 (gs) — 0.



Stability of steady states

Goal of this presentation

Make fully quantitative the proof this stability result : Mainly the
compactness part of the proof may be replaced by a functional
inequality.

For all f € € , there holds :

1
If-Qlf < Co H(f)—H(Q)+|!f*—Q*HL1+§HV¢>f—V¢on2



generalized rearrangement

Rearrangement with respect to the microscopic energy.

Let ¢(x) be a potential field.
Let f € L' N L>°(R®), then we may define its rearrangement with

respect to
v[?
e(x,v) = > + o(x).

which we denote F*?. It is

@ a nonincreasing function of % + o(x);
e such that £*¢ € Eq(f).

Caracterisation : Our steady states are fixed points of this
transformation

Qe =Q



generalized rearrangement

Rearrangement with respect to the microscopic energy.

EXPLICIT CONSTRUCTION OF f*?

2
f->s<‘z’(x7 V) = f* <a¢ <‘V2| + ¢(X)>> ]1#+¢(X)<0

where a; is the Jacobian function defined by

agle) = meas{(x, v) € R : ‘\/2’2 + ¢(x) < e}

_ 8my2 [fee 3/2
= T2 e ex




generalized rearrangement

The key monotonicity property

Lemma. Let f be a distribution function and ¢ its Poisson
potential. Then
H(F) > H(f*¢f).

Proof.
Denote f = f*?¢. We have the decomposition

v[?

M) = (P + 51907 -~ Vorlia+ [ (1 +00) (7 = Praba

By construction of £*?, the green term is nonnegative. This is
reminiscent from the following property of the standard
Schwarz symmetrization :

/R3 Ix|F(x)dx > /R3 Ix|F* (x)dx.



generalized rearrangement

Reduction to a problem on the potential

g 2
H(F) > —C||f" — Q|| + T (¢r) +/ (\\/2] + ¢f> (f — £ )dxdv.

70 = [ (5-+000) @t vydhar + 319013

Two points :

@ The red term J(¢r) only depends on the potential ¢¢, and
J(p@) = H(gg). f* is preserved by the flow.
o The green term is nonnegative and vanishes when f = Q*%r.

H(F) — H(Q) > T(¢r) — T(¢@) — Invariants.



control of the potential

Study of J and control of ¢

vI?

70 = [ (M4 600) @ vianat + ol

Q™ (x,v) = Q* <a¢ ('V; + ¢(X)>>

Proposition. The quantity 7(¢) — J(¢q) controls the distance
of ¢ to the manifold of translated Poisson fields
M ={oq(-+2z), zeR?} :in the vicinity of M, we have

J(@) = T(6Q) = C inf [V~ V(- —2)llz  with C > 0.
Proof. Based on a Taylor expansion. We differentiate twice the

functional J with respect to ¢ and study the Hessian : it is
nonnegative, and coercive on spherical functions.



control of the potential

FIRST VARIATION OF [J

We prove that

DJ(¢)(h) = — /3(%&,*o — Vo) - Vhdx.
JR
Consequence :
Since @ = @*?¢ ("fundamental identity of the steady state”), we
have ¢ 6o = @@, hence DJ(dq)(h) = 0.
This shows that :
@@ is a critical point of the function J



control of the potential

SECOND VARIATION OF J

We prove that
D27 (60)(h, h) = / Vh\2dx—/(h(x)—l'lh(e(x, )| F(e(x v))| dxdy

with e(x, v) = @ + ¢po(x).
Here 1 is the projector on functions of e(x, v) :

[ (e = o)) hiy)dy
J (e = dq(y))*/? dy

Crucial : the quadratic form D?7(¢q)(h, h) is coercive, up to the
degeneracy induced by the translational invariance.

Mh(e) =




control of the potential

COERCIVITY OF THE HESSIAN (1/2)

Step 1. On radial functions we have a Poincaré inequality :
/]thdxz /( (x) — Mh(x,v) ’F e(x, v))| dxdv
Remark. This is a new Antonov-like inequality.

Proof. Adaptation of Hormander's approach for sharp weighted
Poincaré inequalities

[ fdu 2
/ <f — > du < C/ \Vfl?dp, dp= e V¥dx,
JRN fd/l, JRN

under the convexity assumption V2V > (.




control of the potential

COERCIVITY OF THE HESSIAN (2/2)

Step 2. Decomposing h = hg + h1 with hg radial and hy
orthogonal to radial functions, one gets

DT (¢q)(h, h) = DT (6q)(ho, ho) + (Lh1, h)

with £ = —A + Vg and Vg(x) = [ |F'(e)|dv. Moreover, by
translation invariance,
L(Vgq) = 0.

Hence, since ¢ is monotone increasing, a standard argument
based on an expansion on spherical harmonics yields that £
restricted on (H )" is nonnegative and its kernel is
Span{0x¢q, 1 < i < 3}.



control of f

A general rearrangement of measurable functions

Let 0 be a nonnegative and nonzero measurable function of RY,
d > 1. Consider the associated Jacobian function :

Ve € R, ap(e) = meas{x € R?,0(x) < e} € R, N {+oc}.

Assume that the nondecreasing function ag is a convex C*
diffeomorphism from [0, emax[ to [0, +oc[. For all f € L}(RY) , we
define its rearrangement f*¢ with respect to 6 by

f*e(x) = *(ap(0(x))), Vxe R,

where f* is the usual Schwarz rearrangement of f. In particular
f*9 is the only decreasing function of 6(x) which is equimeasurable
with f.

V.




control of f

A generalized bathtub inequality.

Bathtub inequality (ML, 2012)

Let 0 be as above. Then for any nonnegative function f € L*(R9)
such that

[|f]| oo
K(F7) = /0 a0 (2p¢(5))]ds < o0

17 (s) = meas{x € RY f(x) > s} = pus«(s),

we have

If = FIIEs S4K(f*)/ 0(x)(F(x) = £7(x)) dx.
Rd




control of f

A particular case : the Schwarz symmetrization

Take 0(x) = |x|™, m < d. In this case f*%(x) = f*(|By||x|9) is
the standard Schwarz symmetrization.

Corollary

For all f € LY(RY) N L>(RY), d > 1, and for all m < d, there holds

—m/d —14+m/d %
L WG = () = Kl LD N = s

with

- m
Ky =271 5| Byl.

|By| is the measure of the unit ball in R

o’

This provides a refinement of the well-known bathtub inequality of
rearrangements : [ |x|f(x)dx > [ |x|f*(x)dx



control of f

Application to Vlasov equations

v|? 1
1()-1(@ = [ (15 +00) (7 Qo ~J1¥or- Vgl
Assume f is equimeasurable with @ to simplify, and let
v[?
O(x,v) = o T 9Q(x).

1
H(F) = H(Q) > 4K (@I = QI — 5IIVér — VoollZ:



control of f

In summary

@ Local quantitative control of the potential
Zi&& IVor—Voo(-—2)|7 < CIH(F) — H(Q) + ||f* — Q|| 1]

@ Quantitative control of the full distribution function For all
f € £, there holds :

1
If=QIfx < Co |H(F) = H(Q) + [If* = Q[lx + SIVer - Véqli:



Conclusion

Some perspectives

o Parallel with incompressible fluids is possible (2D
incompressible Euler) : Our approach covers the result by Lin
(2004), but a complete stability result is not clear yet.

@ Extension to other relativistic models : Vlasov-Einstein in the
spherically symmetric and asymptotically flat space time.



Conclusion

THANK YOU'!
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