Shape optimization for the observability of PDEs

Yannick Privat, Emmanuel Trélat and Enrique Zuazua

CNRS, ENS Cachan Bretagne, Univ. Rennes 1

dec. 2012

Outlines of this talk

- Introduction and motivation : about the shape optimization of observability constants
- Optimal observability for wave and Schrödinger equations
 - Solving of the first problem
 - A randomized criterion
 - Solving of the second problem
- 3 Optimal observability for the heat equation

N-D wave/Schrödinger equations

- \hookrightarrow (M,g) N-D Riemannian manifold
- $\hookrightarrow \Delta_g$ Laplace Beltrami operator
- $\hookrightarrow \Omega$ open bounded connected subset of $M \quad \hookrightarrow \mathcal{T} > 0$ fixed
- $\hookrightarrow \omega \subset \Omega$ subset of positive measure

N-D wave equation

$$\begin{cases} y_{tt} - \Delta_g y = 0 & (t, x) \in (0, T) \times \Omega \\ y(0, x) = y^0(x), \ \partial_t y(0, x) = y^1(x) & x \in \Omega. \end{cases}$$
 (1)

 \hookrightarrow If $\partial\Omega\neq\emptyset$, Dirichlet or Neumann or mixed Dirichlet-Neumann or Robin boundary conditions on $\partial\Omega$

$$\forall (y^0, y^1) \in H_0^1(\Omega) \times L^2(\Omega),$$

$$\exists ! y \in \mathcal{C}^0([0, T], H_0^1(\Omega)) \times \mathcal{C}^1([0, T], L^2(\Omega)), \text{ solution of } (1)$$

Observable variable ($\omega \subset \Omega$ of positive measure)

$$z(t,x) = \chi_{\omega}(x)y_t(t,x) = \begin{cases} y_t(t,x) & \text{if } x \in \omega \\ 0 & \text{else.} \end{cases}$$

N-D wave/Schrödinger equations

- \hookrightarrow (M,g) N-D Riemannian manifold
- $\hookrightarrow \Delta_{\varepsilon}$ Laplace Beltrami operator
- $\hookrightarrow \Omega$ open bounded connected subset of $M \hookrightarrow T > 0$ fixed

 $\hookrightarrow \omega \subset \Omega$ subset of positive measure

N-D Schrödinger equation

$$\begin{cases} iy_t - \Delta_g y = 0 & (t, x) \in (0, T) \times \Omega \\ y(0, x) = y^0(x) & x \in \Omega. \end{cases}$$
 (2)

 \hookrightarrow If $\partial\Omega \neq \emptyset$, Dirichlet or Neumann or mixed Dirichlet-Neumann or Robin boundary conditions on $\partial\Omega$

$$\forall y^0 \in H_0^1 \cap H^2(\Omega),$$

$$\exists ! y \in \mathcal{C}^0([0,T], H_0^1 \cap H^2(\Omega)), \text{ solution of (2)}$$

Observable variable ($\omega \subset \Omega$ of positive measure)

$$z(t,x) = \chi_{\omega}(x)y_t(t,x) = \begin{cases} y_t(t,x) & \text{if } x \in \omega \\ 0 & \text{else.} \end{cases}$$

Observability of the N-D wave equation

→ Without loss of generality, we consider the wave equation with Dirichlet boundary conditions

Observability inequality

The time T being chosen large enough, how to choose $\omega \subset \Omega$ to ensure that $\forall (v^0, v^1) \in H_0^1(\Omega)(\Omega) \times L^2(\Omega)$

$$C_T \| (y^0, y^1) \|_{H_0^1(\Omega) \times L^2(\Omega)}^2 \le \int_0^T \int_{\Omega} z(t, x)^2 dx dt ?$$
 (3)

Observability of the N-D wave equation

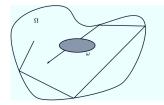
 \hookrightarrow Without loss of generality, we consider the wave equation with Dirichlet boundary conditions

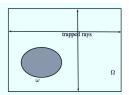
Observability inequality

The time T being chosen large enough, how to choose $\omega \subset \Omega$ to ensure that $\forall (y^0, y^1) \in H^1_0(\Omega)(\Omega) \times L^2(\Omega)$

$$C_T \| (y^0, y^1) \|_{H_0^1(\Omega) \times L^2(\Omega)}^2 \le \int_0^T \int_{\Omega} z(t, x)^2 dx dt ?$$
 (3)

• Microlocal Analysis. Bardos, Lebeau and Rauch proved that, roughly in the class of \mathcal{C}^{∞} domains, the observability inequality (3) holds iff (ω, T) satisfies the Geometric Control Condition (GCC).





Shape optimization problems

Observability constant :

$$C_{T}(\chi_{\omega}) = \inf_{\substack{y \text{ solution of (1)} \\ (y^{0}, y^{1}) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)}} \frac{\int_{0}^{T} \int_{\omega} y_{t}(t, x)^{2} dx dt}{\|(y^{0}, y^{1})\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2}}.$$

Shape optimization problems

Observability constant :

$$C_{T}(\chi_{\omega}) = \inf_{\substack{y \text{ solution of } (1) \\ (y^{0}, y^{1}) \in H_{0}^{1}(\Omega) \times L^{2}(\Omega)}} \frac{\int_{0}^{T} \int_{\omega} y_{t}(t, x)^{2} dx dt}{\|(y^{0}, y^{1})\|_{H_{0}^{1}(\Omega) \times L^{2}(\Omega)}^{2}}.$$

Some relevant problems when looking for optimal observability or optimal sensors location Fix $L \in (0,1)$. We investigate the problem of maximizing

- (Problem 1) either the quantity $G_T(\chi_\omega) = \int_0^T \int_\Omega \chi_\omega(x) |y_t(t,x)|^2 dx dt$, the initial data $(y^0,y^1) \in H_0^1(\Omega) \times L^2(\Omega)$ being fixed,
- (Problem 2) or the observability constant $C_T(\chi_\omega)$ over all possible subset $\omega \subset \Omega$ of Lebesgue measure $L|\Omega|$.

Related problems

Optimal design for control/stabilization problems

What is the "best domain" for achieving HUM optimal control?

$$y_{tt} - \Delta y = \chi_{\omega} u$$

② What is the "best domain" domain for stabilization (with localized damping)?

$$y_{tt} - \Delta y = -k\chi_{\omega}y_t$$

See works by

- P. Hébrard, A. Henrot : theoretical and numerical results in 1D for optimal stabilization (for all initial data).
- A. Münch, P. Pedregal, F. Periago: numerical investigations of the optimal domain (for one fixed initial data). Study of the relaxed problem.
- S. Cox, P. Freitas, F. Fahroo, K. Ito, ... : variational formulations and numerics.
- M.I. Frecker, C.S. Kubrusly, H. Malebranche, S. Kumar, J.H. Seinfeld, ...: numerical investigations (among a finite number of possible initial data).
- K. Morris, S.L. Padula, O. Sigmund, M. Van de Wal, ...: numerical investigations for actuator placements (predefined set of possible candidates), Riccati approaches.

Fix $L \in (0,1)$

First Problem

Given $(y^0, y^1) \in H_0^1(\Omega) \times L^2(\Omega)$, we investigate the problem of maximizing

$$G_{T}(\chi_{\omega}) = \int_{0}^{T} \int_{\omega} y_{t}(t, x)^{2} dx dt$$

where y is the solution of (1), over all possible subset $\omega \subset \Omega$ of Lebesgue measure $L|\Omega|$.

 \hookrightarrow In this maximization problem, the optimal set ω , whenever it exists, depends on the initial data (y^0, y^1) .

Spectral rewriting of the first problem

Maximize

$$G_T(\chi_\omega) = \int_\omega \varphi(x) dx$$
 where $\varphi(x) = \int_0^T |y_t(t,x)|^2 dt$

over all possible subsets $\omega \subset \Omega$ of given Lebesgue measure $|\omega| = L|\Omega|$.

Spectral rewriting of the first problem

Maximize

$$G_T(\chi_\omega) = \int_\omega \varphi(x) dx$$
 where $\varphi(x) = \int_0^T |y_t(t,x)|^2 dt$

over all possible subsets $\omega \subset \Omega$ of given Lebesgue measure $|\omega| = L|\Omega|$.

Consequences

- There exists at least one optimal measurable subset $\omega \subset \Omega$:
- Characterization: there exists $\lambda \in \mathbb{R}$ such that, if ω denotes an optimal set, then

10èmes JEAN - Univ. Rennes 1

- $\{\chi_{\omega} = 1\} \subset \{\varphi > \lambda\}$;
- $\{\chi_{\omega} = 0\} \subset \{\varphi < \lambda\}.$

Theorem

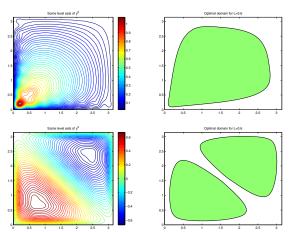
Assume that M is an analytic manifold, if $\partial\Omega \neq \emptyset$ is \mathcal{C}^{∞} , and if y^0 and y^1 have analyticity properties, then the first problem has a unique solution ω that verifies

- i ω has a finite number of connected components,
- ii ω is semi-analytic,
- iii ω enjoys the same symmetry properties as Ω .

Remarks

- if y^0 and y^1 have a finite number of nonzero Fourier coefficients (say N), then the optimal set ω has at most f(N) connected components; s. Mandelbrojt, Quasi-analycité des séries de Fourier, Ann. Scuola Normale Sup. Pisa, tome 4, no. 3 (1935), 225-229
- ullet there exist smooth data (\mathcal{C}^∞) for which the set ω has a fractal structure
- \bullet initial data for which ω is not unique can be characterized

$$\Omega = [0, \pi]^2$$
, $L = 0.6$, $T = 3$ and $y^0(x) = \sum_{n,k=1}^{15} a_{n,k} \sin(nx_1) \sin(kx_2)$, $y^1 = 0$.



At the top : $a_{n,k} = \frac{1}{n^2 + k^2}$. At the bottom : $a_{n,k} = \frac{1 - (-1)^{n+k}}{n^2 k^2}$.

Yannick Privat (ENS Cachan Bretagne)

Fix $L \in (0,1)$

Second Problem

We investigate the problem of maximizing the quantity $C_T(\chi_\omega)$ over all possible subsets $\omega \subset \Omega$ of Lebesgue measure $L|\Omega|$.

Spectral expansion of the solution *y*

$$\forall t \in (0,T), \ y(t,\cdot) = \sum_{j=1}^{+\infty} (a_j \cos(\lambda_j t) + b_j \sin(\lambda_j t)) \phi_j$$

where

- (λ_j, ϕ_j) denotes the j-th eigenpair of the Laplace-Dirichlet operator on Ω ,
- a_i , b_i are determined by the initial conditions.

Fix $L \in (0,1)$

Second Problem

We investigate the problem of maximizing the quantity $C_T(\chi_\omega)$ over all possible subsets $\omega \subset \Omega$ of Lebesgue measure $L|\Omega|$.

Rewriting of $C_T(\chi_\omega)$

$$C_{T}(\chi_{\omega}) = \inf_{\substack{(\hat{a}_{j}), \ (\hat{b}_{j}) \in \ell^{2}(\mathbb{C}) \\ \sum_{j=1}^{+\infty} (|\hat{a}_{j}|^{2} + |\hat{b}_{j}|^{2}) = 1}} \int_{0}^{T} \int_{\omega} \left| \sum_{j=1}^{+\infty} (\hat{a}_{j} e^{i\lambda_{j}t} - \hat{b}_{j} e^{-i\lambda_{j}t}) \phi_{j}(x) \right|^{2} dx dt$$

- Criterion difficult to handle
- Presence of crossed terms when expanding the square

Fix $L \in (0,1)$

Second Problem

We investigate the problem of maximizing the quantity $C_T(\chi_\omega)$ over all possible subsets $\omega \subset \Omega$ of Lebesgue measure $L|\Omega|$.

- Study of the previous "inf" problem (investigation of the existence, uniqueness of a minimizer).
 - \hookrightarrow Linked with the question of the existence of an optimal constant in Ingham's inequality.

Ingham's inequality

Assume that $(\lambda_j) \in \mathbb{R}^n$ verifies $\lambda_{j+1} - \lambda_j \ge \gamma > 0$. Thus, if T is large enough, there exists C_1 , $C_2 > 0$ s.t. for every $(a_j) \in \ell^2(\mathbb{C})$,

$$|C_1\sum_j|a_j|^2\leq \int_0^{\tau}\left|\sum_ja_je^{i\lambda_jt}\right|^2dt\leq |C_2\sum_j|a_j|^2.$$

• Spectral reduction of the criterion?

◆ロ → ←部 → ← き → ・き → りゅう

Toward a new shape optimization problem

Possible remedies: Randomization of the PDE

→ Random selection of the initial data:

$$y^{\nu}(t,x) = \sum_{j=1}^{+\infty} \left(\beta_{1,j}^{\nu} a_j e^{i\lambda_j t} + \beta_{2,j}^{\nu} b_j e^{-i\lambda_j t} \right) \phi_j(x),$$

where $(\beta_{1,j}^{\nu})_{j\in\mathbb{N}^*}$ and $(\beta_{2,j}^{\nu})_{j\in\mathbb{N}^*}$ are two sequences of independent Bernoulli random variables on a probability space $(X,\mathcal{A},\mathbb{P})$, satisfying

$$\mathbb{P}(\beta_{1,j}^{\nu} = \pm 1) = \mathbb{P}(\beta_{2,j}^{\nu} = \pm 1) = \frac{1}{2}$$
 and $\mathbb{E}(\beta_{1,j}^{\nu} \beta_{2,k}^{\nu}) = 0$

for every j and k in \mathbb{N}^* and every event $\nu \in A$.

(see Burq - Tzvetkov, Invent. Math. 2008)

A randomized observability constant

 \hookrightarrow We consider the randomized observability inequality

$$C_{T,\mathsf{rand}}(\chi_\omega)\|(y^0,y^1)\|_{H^1_0\times L^2}^2 \leq \mathbb{E}\left(\int_0^T \int_\omega y_t^\nu(t,x)^2\,dxdt\right),$$

for all $y^0(\cdot) \in L^2(\Omega)$ and $y^1(\cdot) \in H^{-1}(\Omega)$, where y^{ν} denotes the solution of the wave equation with random initial data $y^{0,\nu}$ and $y^{1,\nu}$.

A randomized observability constant

→ We consider the randomized observability inequality

$$C_{T,\mathsf{rand}}(\chi_\omega)\|(y^0,y^1)\|_{H^1_0\times L^2}^2 \leq \mathbb{E}\left(\int_0^T \int_\omega y_t^\nu(t,x)^2\,dxdt\right),$$

for all $y^0(\cdot) \in L^2(\Omega)$ and $y^1(\cdot) \in H^{-1}(\Omega)$, where y^{ν} denotes the solution of the wave equation with random initial data $y^{0,\nu}$ and $y^{1,\nu}$.

Proposition

For every measurable set $\omega \subset \Omega$,

$$C_{T,\mathrm{rand}}(\chi_{\omega}) = T \inf_{j \in \mathbb{N}^*} \int_{\omega} \phi_j(x)^2 dx.$$

There holds $C_{T,rand}(\chi_{\omega}) \geq C_{T}(\chi_{\omega})$. There are examples where the inequality is strict.

Optimal observability with respect to the domain

Question

What is the "best possible" observation domain ω of given measure?

10èmes JEAN - Univ. Rennes 1

Optimal observability with respect to the domain

Question

What is the "best possible" observation domain ω of given measure?

A new "Second Problem" (energy concentration criterion)

We investigate the problem of maximizing

$$\frac{C_{T,\mathsf{rand}}(\chi_{\omega})}{T} = \inf_{j \in \mathbb{N}^*} \int_{\omega} \phi_j(x)^2 dx.$$

over all possible subset $\omega \subset \Omega$ of Lebesgue measure $L|\Omega|$.

Spectral rewriting of the second problem

Maximize

$$\frac{C_{T,\mathsf{rand}}(\chi_\omega)}{T} = \inf_{j \in \mathbb{N}^*} \int_\omega \phi_j(x)^2 dx$$

over all possible subsets $\omega \subset \Omega$ of given Lebesgue measure $|\omega| = L|\Omega|$.

Remark. Another justification of the relevance of this criterion.

Proposition

If the spectrum of the Laplace-Dirichlet operator consists of simple eigenvalues, thus

$$\lim_{T\to+\infty}\widetilde{C}_T(\chi_\omega)=\inf_{j\in\mathbb{N}^*}\int_{\omega}\phi_j(x)^2dx.$$

where $C_T(\chi_\omega)$ stands for the largest constant C in the observability inequality

$$|C||(y^0, y^1)||_{H_0^1 \times L^2}^2 \le \lim_{T \to +\infty} \frac{1}{T} \int_0^T \int |\partial_t y(t, x)^2| dx dt.$$

(for all $v^0 \in H^1_0$ and $v^1 \in L^2$)

Relaxation procedure

Second problem

$$\sup_{\substack{\omega \subset \Omega \\ |\omega| = L|\Omega|}} J(\chi_{\omega}) := \sup_{\substack{\omega \subset \Omega \\ |\omega| = L|\Omega|}} \inf_{j \in \mathbb{N}^*} \int_{\omega} \phi_j(x)^2 dx$$

Admissible set for this problem :

$$\mathcal{U}_L = \{\chi_\omega \mid \omega \text{ is a measurable subset of } \Omega \text{ of measure } L|\Omega|\}.$$

ullet Closure of this set for the weak-star topology of L^∞ :

$$\overline{\mathcal{U}}_L = \left\{ a \in L^{\infty}(\Omega; (0,1)) \mid \int_{\Omega} a(x) dx = L|\Omega| \right\}.$$

Relaxed second problem

$$\sup_{a\in \overline{\mathcal{U}}_L} J(a) := \sup_{a\in \overline{\mathcal{U}}_L} \inf_{j\in \mathbb{N}^*} \int_{\Omega} a(x) \phi_j(x)^2 dx$$

Solving the relaxed second problem

 $(L^{\infty}$ -weak Quantum Ergodicity) Assumption

- The sequence $(\phi_j^2)_{j\in\mathbb{N}^*}$ is uniformly bounded in L^∞ norm
- ullet There exists a subsequence such that $\phi_j^2
 ightharpoonup rac{1}{|\Omega|}$ vaguely as $j
 ightarrow +\infty$

We have

$$\sup_{a \in \overline{\mathcal{U}}_L} \inf_{j \in \mathbb{N}^*} \int_{\Omega} a(x) \phi_j(x)^2 dx = L \quad \text{(reached with } a = L\text{)}$$

Remarks.

- ullet L^{∞} -WQE holds true in any flat torus
- if Ω is a convex ergodic billiard with $W^{2,\infty}$ boundary then $\phi_j^2 \rightharpoonup \frac{1}{|\Omega|}$ vaguely for a subset of indices of density 1.

Gérard-Leichtnam (Duke Math. 1993), Zelditch-Zworski (CMP 1996), Burq-Zworski (SIAM Rev. 2005), see also Shnirelman, Colin de Verdière, .

- イロナ イ部ナ イミナ イミナ - ミ

Gap or no-gap?

A priori,

$$\sup_{\substack{\omega\subset\Omega\\|\omega|=L|\Omega|}}J(\chi_\omega)\leq \sup_{a\in\overline{\mathcal{U}}_L}J(a).$$

Remarks in 1D:

- Note that, for every ω , $\int_{\omega} \sin^2(jx) dx \xrightarrow{j \to +\infty} \frac{L\pi}{2}$ as $j \to +\infty$.
- No lower semi-continuity (but upper semi-continuity) of the criterion.
- With $\omega_N = \bigcup_{k=1}^N \left[\frac{k\pi}{N+1} \frac{L\pi}{2N}, \frac{k\pi}{N+1} + \frac{L\pi}{2N} \right]$, one has $\chi_{\omega_N} \rightharpoonup L$ but

$$\lim_{N\to+\infty}J(\omega_N)< L.$$

Theorem 1

Under L^{∞} -WQE, there is no gap, that is :

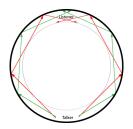
$$\sup_{\chi_{\omega}\in\mathcal{U}_{L}}\inf_{j\in\mathbb{N}^{*}}\int_{\Omega}\chi_{\omega}(x)\phi_{j}(x)^{2}\,dx=\sup_{a\in\overline{\mathcal{U}}_{L}}\inf_{j\in\mathbb{N}^{*}}\int_{\Omega}a(x)\phi_{j}(x)^{2}\,dx=L.$$

ightarrow the maximal value of the time-asymptotic / randomized observability constant is $\it L.$

Remark

 L^{∞} -WQE is not a sharp assumption :

the result also holds also true in the Euclidean disk, for which however the eigenfunctions are not uniformly bounded in L^{∞} (whispering galleries phenomenon).



(L^p -Quantum Unique Ergodicity) Assumption

- ullet There exists p>1 such that the sequence $(\phi_j^2)_{j\in\mathbb{N}^*}$ is uniformly bounded in L^p norm
- The whole sequence $\phi_j^2 \rightharpoonup \frac{1}{|\Omega|}$ vaguely as $j \to +\infty$.

Introduce the subset of \mathcal{U}_L , consisting of characteristic functions of Jordan-measurable subsets ω of Ω , that is

$$\mathcal{U}_L^b = \{\chi_\omega \in \mathcal{U}_L \ | \ |\partial\omega| = 0\}$$

Theorem 2

Under L^p -QUE,

$$\sup_{\chi_{\omega}\in\mathcal{U}_{I}^{b}}\inf_{j\in\mathbb{N}^{*}}\int_{\Omega}\chi_{\omega}(x)\phi_{j}(x)^{2}\,dx=L.$$

Remark : The result holds as well if one replaces \mathcal{U}_L^b with either the set of open subsets having a Lipschitz boundary, or with a bounded perimeter.

On the QUE assumption

Quantum Unique Ergodicity property (QUE) in multi-D

- true in 1D, since $\phi_j(x) = \sqrt{\frac{2}{\pi}} \sin(jx)$ on $\Omega = [0, \pi]$
- Gérard-Leichtnam (Duke Math. 1993), Burq-Zworski (SIAM Rev. 2005) : if Ω is a convex ergodic billiard with $W^{2,\infty}$ boundary then $\phi_j^2 \rightharpoonup \frac{1}{|\Omega|}$ vaguely for a subset of indices of density 1.
- Strictly convex billiards sufficiently regular are not ergodic (Lazutkin, 1973).
 Rational polygonal billiards are not ergodic.
 Generic polygonal billiards are ergodic (Kerckhoff-Masur-Smillie, Ann. Math. '86).
- ullet There exist some convex sets Ω (stadium shaped) that satisfy QE but not QUE (Hassell, Ann. Math. 2010)
- QUE conjecture (Rudnick-Sarnak 1994): every compact manifold having negative sectional curvature satisfies QUE.

→□▶→□▶→■▶ ● 釣۹@

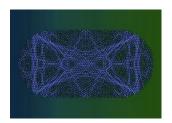
On the QUE assumption

Energy concentration phenomena

Hence in general this assumption is related with ergodic / concentration / entropy properties of eigenfunctions.

See Snirelman, Sarnak, Bourgain-Lindenstrauss, Colin de Verdière, Anantharaman, Nonenmacher, ...

If this assumption fails, we may have scars: energy concentration phenomena (there can be exceptional subsequences converging to other invariant measures, like, for instance, measures carried by closed geodesics: scars)



A truncated problem

Assume that there is no gap, i.e.

$$\sup_{\substack{\omega\subset\Omega\\|\omega|=L|\Omega|}}J(\chi_\omega)=\sup_{a\in\overline{\mathcal{U}}_L}J(a)=:J.$$

$$\Rightarrow \lim_{N \to +\infty} \sup_{\chi_{\omega} \in \mathcal{U}_L} \inf_{1 \le j \le N} \int_{\Omega} \chi_{\omega}(x) \phi_j(x)^2 \, dx = J.$$

A truncated problem

Assume that there is no gap, i.e.

$$\sup_{\substack{\omega\subset\Omega\\|\omega|=L|\Omega|}}J(\chi_\omega)=\sup_{a\in\overline{\mathcal{U}}_L}J(a)=:J.$$

$$\Rightarrow \lim_{N \to +\infty} \sup_{\chi_{\omega} \in \mathcal{U}_{L}} \inf_{1 \le j \le N} \int_{\Omega} \chi_{\omega}(x) \phi_{j}(x)^{2} dx = J.$$

Theorem (YP-Sigalotti - COCV 2009)

Let $L \in (0,1)$. The shape optimization problem

$$\sup_{\chi_{\omega} \in \mathcal{U}_L} \inf_{1 \leq j \leq N} \int_{\Omega} \chi_{\omega}(x) \phi_j(x)^2 dx$$

has a unique solution ω_N^* .

 \hookrightarrow Convergence of $(\chi_{\omega_N^*})_{N\in\mathbb{N}^*}$ to a minimizer of the second problem.

Solving the truncated second problem

The 1-D case - $\Omega = (0, \pi)$

Truncated second problem

$$\sup_{\substack{\omega \subset [0,\pi]\\ |\omega| = L\pi}} \inf_{1 \le j \le N} \int_{\omega} \sin^2(jx) dx$$

Theorem (Hébrard-Henrot and YP-Trélat-Zuazua)

This problem has a unique solution ω^N , satisfying

- ω^N is the union of at most N intervals
- ω^N is symmetric w.r.t. $\pi/2$
- there exists η_N such that $\omega^N \subset [\eta_N, \pi \eta_N]$
- there exists $L_N \in (0,1]$ such that, for every $L \in (0,L_N]$,

$$\int_{\omega_N} \sin^2 x dx = \int_{\omega_N} \sin^2(2x) dx = \dots = \int_{\omega_N} \sin^2(Nx) dx$$

Solving the truncated second problem

The 1-D case - $\Omega=(0,\pi)$

Truncated second problem

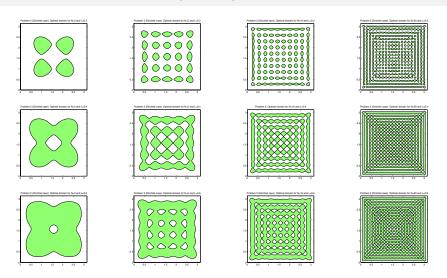
$$\sup_{\substack{\omega \subset [0,\pi]\\ |\omega = L\pi|}} \inf_{1 \le j \le N} \int_{\omega} \sin^2(jx) dx$$

- Equality of the criteria \longrightarrow the optimal domain ω^N concentrates around the points $\frac{k\pi}{N+1}$, $k=1,\cdots,N$
- Spillover phenomenon : the best domain ω^N for the first N modes is the worst possible for N+1 modes.

The proof appears unexpectedly difficult...

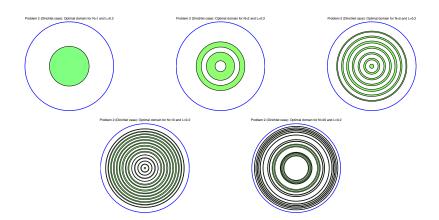
Several numerical simulations : $\Omega = [0, \pi]^2$

For 4, 25, 100 and 500 eigenmodes and $L \in \{0.2, 0.4, 0.6\}$



Several numerical simulations : $\Omega = \text{unit disk}$

L = 0.2, for 1, 4, 25, 100 and 400 eigenmodes



N-D heat equation

$$\begin{cases} y_t - \Delta_g y = 0 & (t, x) \in (0, T) \times \Omega \\ y(t, x) = 0 & t \in [0, T], \ x \in \partial \Omega \\ y(0, x) = y^0(x) & x \in \Omega. \end{cases}$$

$$\,\hookrightarrow\,\exists!y\in\mathcal{C}^0(0,\,T;H^2\cap H^1_0(\Omega))\cap\mathcal{C}^0(0,\,T;L^2(\Omega))$$

Observable variable ($\omega \subset \Omega$ of positive measure)

$$z(t,x) = \chi_{\omega}(x)y(t,x)$$

Observability inequality

$$C_T(\chi_\omega)\|y(T,\cdot)\|_{L^2(\Omega)}^2 \leq \int_0^T \int_\omega y(t,x)^2 dxdt,$$

N-D heat equation

Randomization procedure

→ Randomization of the observability constant :

$$C_{T,\mathrm{rand}} \|y_{\nu}(T,\cdot)\|_{L^2(\Omega)}^2 \leq \mathbb{E}\left(\int_0^T \int_{\omega} y_{\nu}(t,x)^2 dx dt\right),$$

for all $y(T,\cdot)\in L^2(\Omega)$, where y_{ν} denotes the solution of the wave equation with the random intial data y_{ν}^0

Proposition

$$C_{T,\text{rand}}(\chi_{\omega}) = \inf_{j \in \mathbb{N}^*} \gamma_j \int_{\Omega} \chi_{\omega}(x) \phi_j(x)^2 dx,$$

where
$$\gamma_j = rac{e^{2\lambda_j T} - 1}{2\lambda_i}$$
.

N-D heat equation

An existence result

$\mathsf{Theorem}$

Assume that

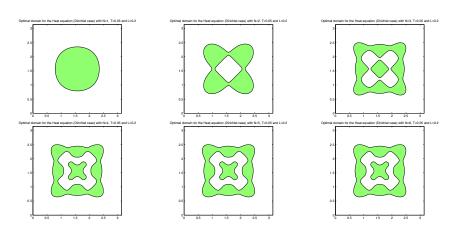
- either Ω satisfies the L^p -(QUE) property,
- or Ω satisfies the L^{∞} -(WQE) property,
- ullet or Ω is a flat torus.

There exists $N_0 \in \mathbb{N}^*$ such that

$$\max_{a \in \overline{\mathcal{U}}_L} \min_{1 \leq j} \gamma_j \int_{\Omega} a(x) \phi_j(x)^2 dx = \max_{\chi_\omega \in \mathcal{U}_L} \min_{1 \leq j \leq N_0} \gamma_j \int_{\omega} \phi_j(x)^2 dx.$$

Stabilization of the optimal domain in the truncation procedure...

Several numerical simulations : $\Omega = [0, \pi]^2$, T = 0.05 and L = 0.2 for $N \in \{1, 2, 3, 4, 5, 6\}$



Stabilization from N = 4 (i.e. 16 eigenmodes)

Conclusion of this talk

• Ongoing work (with P. Jounieaux and E. Trélat): optimal design for boundary observability or control Ω being assumed bounded and its boundary \mathcal{C}^2 , maximize

$$\inf_{j\in\mathbb{N}^*}\frac{1}{\lambda_j(\Omega)}\int_{\Sigma}\left|\frac{\partial\phi_j}{\partial n}\right|^2dx$$

over all possible subsets $\Sigma \subset \partial \Omega$ of given Hausdorff measure.

 Discretization issues (with E. Trélat and E. Zuazua): do the numerical designs converge to the continuous optimal design as the mesh size tends to 0?

Y. Privat, E. Trélat, E. Zuazua, Optimal observation of the one-dimensional wave equation, to appear in J. Fourier Analysis Appl.

Y. Privat, E. Trélat, E. Zuazua, Optimal location of controllers for the one-dimensional wave equation, to appear in Ann. Inst. H. Poincaré.

Y. Privat, E. Trélat, E. Zuazua, Optimal observability of wave and Schrödinger equations in ergodic domains, Preprint (2012).

Kenavo ha trugarez

