Asymptotic diagonalization of Hilbert-Schmidt operators

Benjamin Boutin

IRMAR

University of Rennes 1

Joint work with N. Raymond

Journée de l'Équipe d'Analyse Numérique 15
March 2018

A little history

Hint around the power method : Consider $A \in \mathrm{M}_{n}(\mathbb{C}), x_{0}, y_{0} \in \mathbb{C}^{n}$.

$$
\begin{aligned}
& \text { For } z \text { sufficiently large : } \\
& f(z)=\left\langle x_{0},(z I-A)^{-1} y_{0}\right\rangle=\sum_{\nu=0}^{+\infty} \frac{\overbrace{\left\langle x_{0}, A^{\nu} y_{0}\right\rangle}^{=: s_{\nu}}}{z^{\nu+1}}=\frac{\left\langle x_{0}, \operatorname{adj}(z I-A) y_{0}\right\rangle}{\operatorname{det}(z I-A)} .
\end{aligned}
$$

Under some assumptions on x_{0}, y_{0} and on A :

$$
\frac{s_{\nu+1}}{s_{\nu}} \underset{\nu \rightarrow \infty}{\longrightarrow} \lambda_{1} \text {, eigenvalue of maximum modulus. }
$$

More generaly : Being given the sequence of moments (s_{ν}), find all the eigenvalues of a matrix A ?

GAvatamara)

A little history

Hint around the power method : Consider $A \in \mathrm{M}_{n}(\mathbb{C}), x_{0}, y_{0} \in \mathbb{C}^{n}$.

$$
\begin{aligned}
& \text { For } z \text { sufficiently large : } \\
& \qquad f(z)=\left\langle x_{0},(z I-A)^{-1} y_{0}\right\rangle=\sum_{\nu=0}^{+\infty} \frac{\overbrace{\left\langle x_{0}, A^{\nu} y_{0}\right\rangle}^{=: s_{\nu}}}{z^{\nu+1}}=\frac{\left\langle x_{0}, \operatorname{adj}(z I-A) y_{0}\right\rangle}{\operatorname{det}(z I-A)} .
\end{aligned}
$$

Under some assumptions on x_{0}, y_{0} and on A :

$$
\frac{s_{\nu+1}}{s_{\nu}} \underset{\nu \rightarrow \infty}{\longrightarrow} \lambda_{1} \text {, eigenvalue of maximum modulus. }
$$

More generaly : Being given the sequence of moments $\left(s_{\nu}\right)$, find all the eigenvalues of a matrix A ?

1892 Hadamard extended the above idea to obtain any of the pole of a meromorphic function from its moments, using the sequence of Hankel

Rutishauser

$$
L_{k} R_{k}:=A_{k}, \quad A_{k+1}:=R_{k} L_{k}
$$

1961 Francis, Kublanovskaya: QR algorithm

$$
\begin{gathered}
Q_{k} R_{k}:=A_{k}, \quad A_{k+1}:=R_{k} Q_{k} \\
A_{k+1}=Q_{k}^{\star} A_{k} Q_{k}=\left(Q_{1} \ldots Q_{k}\right)^{\star} A\left(Q_{1} \ldots Q_{k}\right) \\
\operatorname{spec} A_{k}=\operatorname{spec} A
\end{gathered}
$$

Francis, Wilkinson : Fast variants with shifts

$$
Q_{k} R_{k}:=A_{k}-\sigma_{k} I_{n}, \quad A_{k+1}:=R_{k} Q_{k}+\sigma_{k} I_{n}
$$

1968 Colette Lebaud:
Remarques sur la convergence de la méthode Q.R., Publications mathématiques et informatique de Rennes, Tome (1967-1968), Exposé no. 5, p.1-17.
PhD Univ. Rennes: Contribution à l'étude de l'algorithme QR, 1971.

Francis

Lebaud

Common convergence results for the QR algorithm

Theorem

Let $A \in \mathrm{M}_{n}(\mathbb{C})$ and $P \in \mathrm{GL}_{n}(\mathbb{C})$ such that $P A P^{-1}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=D$ with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots>\left|\lambda_{n}\right|>0
$$

Assume moreover that P admits a LU factorization. Then

$$
A_{k} \underset{k \rightarrow \infty}{\longrightarrow}\left(\begin{array}{ccc}
\lambda_{1} & & (\star)_{k} \\
& \ddots & \\
(0) & & \lambda_{n}
\end{array}\right)
$$

The lower part converge as $\mathcal{O}\left(\mu^{k}\right)$ with $\mu=\max _{1 \leq \ell \leq n-1}\left|\frac{\lambda_{\ell+1}}{\lambda_{\ell}}\right|$.

Common convergence results for the QR algorithm

Theorem

Let $A \in \mathrm{M}_{n}(\mathbb{C})$ and $P \in \mathrm{GL}_{n}(\mathbb{C})$ such that $P A P^{-1}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=D$ with

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots>\left|\lambda_{n}\right|>0 .
$$

Assume moreover that P admits a LU factorization. Then

$$
A_{k} \underset{k \rightarrow \infty}{\longrightarrow}\left(\begin{array}{ccc}
\lambda_{1} & & (\star)_{k} \\
& \ddots & \\
(0) & & \lambda_{n}
\end{array}\right) .
$$

The lower part converge as $\mathcal{O}\left(\mu^{k}\right)$ with $\mu=\max _{1 \leq \ell \leq n-1}\left|\frac{\lambda_{\ell+1}}{\lambda_{\ell}}\right|$.

- In presence of "same modulus" distinct eigenvalues: convergence "by block".
- Iterations preserve symmetry and Hessenberg structure.
- Convergence is quadratic for the Wilkinson shifted version, and then cubic for symmetric matrices.
- The algorithm is equivalent to the orthogonal simultaneous power iteration (this makes the assumption $P=L U$ and improved convergence rates more intelligible)

Continuous dynamical systems

1988 Chu and Norris, Isospectral flows and abstract matrix factorizations, SIAM J. Numer. Anal.
1991 Brockett, Dynamical systems that sort lists, diagonalize matrices and solve linear programming problems, Linear Algebra Appl.
1994 Wegner, Flow equations for Hamiltonians, Ann. Physik.
2010 Bach and Bru, Rigorous foundations of the Brockett-Wegner flow for operators, J. Evol. Equ.

2016 Bach and Bru, Diagonalizing quadratic bosonic operators by non-autonomous flow equation, Memoirs AMS.

References for some history :

Gutknecht and Parlett, From qd to LR, or, How were the qd and $L R$ algorithms discovered?, IMA J. Numer. Anal. 31 (2011).
Golub and van der Vorst, Eigenvalue computation in the 20th century, J. Comput. Appl. Math. 123 (2000).

Our aim :

Get a unified proof for different bracket flow ODEs : $H^{\prime}=[H, G(H)]$, acting on Hilbert-Schmidt operators, and understand the QR method!

Outline

Introduction

Main result

Bracket flows

Global existence and isospectrality
Quadratic bracket flows
Several examples

The Toda's choice
A more specific result
Relation with the discrete QR algorithm
Numerical examples

Some notations

$\mathcal{L}(\mathcal{H})$ bounded operators on a separable Hilbert space \mathcal{H}
$\mathcal{S}(\mathcal{H}), \mathcal{A}(\mathcal{H}), \mathcal{U}(\mathcal{H})$ symmetric, skew-symmetric and unitary operators respectively
$\mathcal{L}_{2}(\mathcal{H})$ Hilbert-Schmidt (compact) operators on \mathcal{H}, with the norm $\|\cdot\|_{\text {HS }}$:

$$
\|H\|_{\mathrm{HS}}^{2}=\operatorname{tr}\left(H^{\star} H\right)=\sum_{n \geq 0}\left\|H e_{n}\right\|^{2}=\sum_{n=0}^{+\infty}\left|\lambda_{n}(H)\right|^{2}
$$

$$
\begin{aligned}
\mathcal{S}_{2}(\mathcal{H}) & =\mathcal{S}(\mathcal{H}) \cap \mathcal{L}_{2}(\mathcal{H}) \\
\mathcal{A}_{2}(\mathcal{H}) & =\mathcal{A}(\mathcal{H}) \cap \mathcal{L}_{2}(\mathcal{H})
\end{aligned}
$$

$\left(e_{n}\right)_{n \in \mathbb{N}}$ a Hilbert basis of \mathcal{H}

$$
h_{i, j}=\left\langle H e_{i}, e_{j}\right\rangle, \text { for any } H \in \mathcal{L}(\mathcal{H})
$$

$\mathcal{D}(\mathcal{H})$ bounded diagonal operators with respect to the Hilbert basis:

$$
T \in \mathcal{D}(\mathcal{H}) \Leftrightarrow \forall n \in \mathbb{N}, \exists \lambda_{n} \in \mathbb{R}, T e_{n}=\lambda_{n} e_{n}
$$

$E_{i, j}(i \leq j)$ canonical Hilbert basis of $\mathcal{S}_{2}(\mathcal{H})$
$E_{i, j}^{ \pm}(i<j)$ canonical Hilbert basis of $\mathcal{A}_{2}(\mathcal{H})$

Main result

Consider $H \in \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{L}_{2}(\mathcal{H})\right)$ such that
i) the function $t \mapsto\|H(t)\|_{\text {HS }}$ is bounded,
ii) the family $\left(h_{i, j}\right)_{i, j \in \mathbb{N}}$ is balanced (symmetry-like property, uniform in t)
iii) there exists a pointwise bounded and balanced family of measurable functions $\left(g_{i, j}\right)_{i, j \in \mathbb{N}}$ defined on \mathbb{R} such that

$$
\forall t \in \mathbb{R}, \forall i \in \mathbb{N}, \quad h_{i, i}^{\prime}(t)=\sum_{j=0}^{+\infty} g_{i, j}(t)\left|h_{i, j}(t)\right|^{2}
$$

Suppose that there exists $T>0$ and a sign sequence $\left(\epsilon_{\ell}\right)_{\ell \in \mathbb{N}} \in\{-1,1\}^{\mathbb{N}}$, such that

$$
\begin{equation*}
\forall t \geq T, \forall k, \ell \in \mathbb{N}, k \geq \ell, \epsilon_{\ell} g_{\ell, k}(t) \geq 0 \tag{sign}
\end{equation*}
$$

Then we have the integrability property

$$
\forall \ell \in \mathbb{N}, \quad \sum_{j=0}^{+\infty} \int_{T}^{+\infty}\left|g_{\ell, j}(t)\right|\left|h_{\ell, j}(t)\right|^{2} \mathrm{~d} t<+\infty
$$

and the diagonal terms $h_{\ell, \ell}(t)$ converges at infinity.

Ideas of the proof

- Proof by induction on $\ell \in \mathbb{N}$, using monotonicity arguments
- Limit of the $h_{\ell, \ell}$ coefficient and integrability of the series is controled from the next lemma

Lemma

Consider $h \in \mathcal{C}^{1}\left(\mathbb{R}_{+}\right)$a real-valued bounded function, $F \in L^{1}\left(\mathbb{R}_{+}\right)$and G a nonnegative measurable function defined on \mathbb{R}_{+}such that

$$
\forall t \geq 0, h^{\prime}(t)=F(t)+G(t)
$$

Then, the function G is integrable and h converges to a finite limit at infinity.

Ideas of the proof

- Proof by induction on $\ell \in \mathbb{N}$, using monotonicity arguments
- Limit of the $h_{\ell, \ell}$ coefficient and integrability of the series is controled from the next lemma

Lemma

Consider $h \in \mathcal{C}^{1}\left(\mathbb{R}_{+}\right)$a real-valued bounded function, $F \in L^{1}\left(\mathbb{R}_{+}\right)$and G a nonnegative measurable function defined on \mathbb{R}_{+}such that

$$
\forall t \geq 0, h^{\prime}(t)=F(t)+G(t)
$$

Then, the function G is integrable and h converges to a finite limit at infinity.

$$
\int_{0}^{x} G(t) d t=h(x)-h(0)-\int_{0}^{x} F(t) \mathrm{d} t \leq 2 \sup _{\mathbb{R}_{+}}|h|+\int_{0}^{+\infty}|F(t)| \mathrm{d} t
$$

Therefore $G \in L^{1}\left(\mathbb{R}_{+}\right)$and $\lim _{x \rightarrow+\infty} h(x)=h(0)+\int_{0}^{+\infty}(F(t)+G(t)) \mathrm{d} t$.

Main result (2)

Under the additional semi-uniform lower bound condition

$$
\forall \ell \in \mathbb{N}, \exists c_{\ell}>0, \forall j \neq \ell, \forall t \geq T,\left|g_{\ell, j}(t)\right| \geq c_{\ell}
$$

(lower bound)
we have the stronger integrability result

$$
\sum_{j \neq \ell} \int_{T}^{+\infty}\left|h_{\ell, j}(t)\right|^{2} d t=\int_{T}^{+\infty}\left\|H(t) e_{\ell}-h_{\ell, \ell}(t) e_{\ell}\right\|^{2} \mathrm{~d} t<+\infty
$$

Suppose moreover that, for any $\ell \in \mathbb{N}$, the function $t \mapsto\left\|H^{\prime}(t) e_{\ell}\right\|$ is bounded, then for any $\ell \in \mathbb{N}, H(t) e_{\ell}$ converges to $h_{\ell, \ell}(\infty) e_{\ell}$.

Outline

Introduction

Main result

Bracket flows
Global existence and isospectrality
Quadratic bracket flows
Several examples

The Toda's choice

A more specific result
Relation with the discrete QR algorithm
Numerical examples

Global existence and isospectrality

Theorem

Suppose $G: \mathcal{S}(\mathcal{H}) \rightarrow \mathcal{A}(\mathcal{H})$ is locally Lipschitz, then any solution to the following Cauchy problem

$$
H^{\prime}=[H, G(H)], \quad H(0)=H_{0} \in \mathcal{S}_{2}(\mathcal{H}) .
$$

admits a unique global solution $H \in \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{S}_{2}(\mathcal{H})\right)$ and there exists $U \in \mathcal{C}^{1}(\mathbb{R}, \mathcal{U}(\mathcal{H}))$ such that

$$
H(t)=U(t)^{\star} H_{0} U(t), \quad t \in \mathbb{R} .
$$

Global existence and isospectrality

Theorem

Suppose $G: \mathcal{S}(\mathcal{H}) \rightarrow \mathcal{A}(\mathcal{H})$ is locally Lipschitz, then any solution to the following Cauchy problem

$$
H^{\prime}=[H, G(H)], \quad H(0)=H_{0} \in \mathcal{S}_{2}(\mathcal{H}) .
$$

admits a unique global solution $H \in \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{S}_{2}(\mathcal{H})\right)$ and there exists $U \in \mathcal{C}^{1}(\mathbb{R}, \mathcal{U}(\mathcal{H}))$ such that

$$
H(t)=U(t)^{\star} H_{0} U(t), \quad t \in \mathbb{R} .
$$

Proof: As long $H(t)$ is defined, consider the following Cauchy problem:

$$
\begin{aligned}
& U^{\prime}(t)=U(t) G(H(t)), \\
& U(0)=\operatorname{Id}
\end{aligned}
$$

Then $U(t) \in \mathcal{U}(\mathcal{H})$ and $H(t)=U^{\star}(t) H_{0} U(t)$.

Global existence and isospectrality

Theorem

Suppose $G: \mathcal{S}(\mathcal{H}) \rightarrow \mathcal{A}(\mathcal{H})$ is locally Lipschitz, then any solution to the following Cauchy problem

$$
H^{\prime}=[H, G(H)], \quad H(0)=H_{0} \in \mathcal{S}_{2}(\mathcal{H})
$$

admits a unique global solution $H \in \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{S}_{2}(\mathcal{H})\right)$ and there exists
$U \in \mathcal{C}^{1}(\mathbb{R}, \mathcal{U}(\mathcal{H}))$ such that

$$
H(t)=U(t)^{\star} H_{0} U(t), \quad t \in \mathbb{R}
$$

Proof: As long $H(t)$ is defined, consider the following Cauchy problem:

$$
\left\lvert\, \begin{aligned}
& U^{\prime}(t)=U(t) G(H(t)) \\
& U(0)=\mathrm{Id}
\end{aligned}\right.
$$

Then $U(t) \in \mathcal{U}(\mathcal{H})$ and $H(t)=U^{\star}(t) H_{0} U(t)$.

$$
\begin{aligned}
\frac{d}{d t}\left(U U^{\star}\right) & =U^{\prime} U^{\star}+U U^{\prime \star} \\
& =U G(H) U^{\star}+U(U \underbrace{G(H)}_{\in \mathcal{A}(\mathcal{H})})^{\star}=U G(H) U^{\star}-U G(H) U^{\star}=0 .
\end{aligned}
$$

Global existence and isospectrality

Theorem

Suppose $G: \mathcal{S}(\mathcal{H}) \rightarrow \mathcal{A}(\mathcal{H})$ is locally Lipschitz, then any solution to the following Cauchy problem

$$
H^{\prime}=[H, G(H)], \quad H(0)=H_{0} \in \mathcal{S}_{2}(\mathcal{H})
$$

admits a unique global solution $H \in \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{S}_{2}(\mathcal{H})\right)$ and there exists
$U \in \mathcal{C}^{1}(\mathbb{R}, \mathcal{U}(\mathcal{H}))$ such that

$$
H(t)=U(t)^{\star} H_{0} U(t), \quad t \in \mathbb{R}
$$

Proof: As long $H(t)$ is defined, consider the following Cauchy problem:

$$
\left\lvert\, \begin{aligned}
& U^{\prime}(t)=U(t) G(H(t)) \\
& U(0)=\mathrm{Id}
\end{aligned}\right.
$$

Then $U(t) \in \mathcal{U}(\mathcal{H})$ and $H(t)=U^{\star}(t) H_{0} U(t)$.

$$
\begin{aligned}
\frac{d}{d t}\left(U H U^{\star}\right) & =U^{\prime} H U^{\star}+U H^{\prime} U^{\star}+U H U^{\prime \star} \\
& =U G(H) H U^{\star}+U[H, G(H)] U^{\star}-U H G(H) U^{\star} \\
& =U(G(H) H-H G(H)+[H, G(H)]) U^{\star}=0 .
\end{aligned}
$$

Quadratic bracket flows

Consider $H^{\prime}=[H, G(H)]$, in the case $G \in \mathcal{L}\left(\mathcal{S}_{2}(\mathcal{H}), \mathcal{A}_{2}(\mathcal{H})\right)$.

The map G is said to be diagonalizable when there exists a Hilbertian basis $\left(e_{n}\right)_{n \in \mathbb{N}}$ and a skew-symmetric family $\left(g_{i, j}\right)$ such that $G\left(E_{i, j}\right)=g_{i, j} E_{i, j}^{ \pm}$.
We then have

$$
h_{i, i}^{\prime}(t)=-2 \sum_{j} g_{i, j}\left|h_{i, j}(t)\right|^{2}
$$

and prove from the main result :

Corollary

Let $G \in \mathcal{L}\left(\mathcal{S}_{2}(\mathcal{H}), \mathcal{A}_{2}(\mathcal{H})\right)$ be a diagonalizable map such that its matrix-eigenvalue satisfies (sign) and (lower bound).
Then the unique global solution $H \in \mathcal{C}^{1}\left(\mathbb{R}, \mathcal{S}_{2}(\mathcal{H})\right)$ converges weakly in $\mathcal{S}_{2}(\mathcal{H})$ to some $H_{\infty} \in \mathcal{D}_{2}(\mathcal{H})$.
Moreover, any diagonal term α of H_{∞} with multiplicity m is an eigenvalue of H_{0} of multiplicity at least m.

Example 1: Brockett's choice

$$
G_{\mathrm{Br}}(H)=[H, A], \quad \text { where } A=\operatorname{diag}\left(a_{1}, \ldots\right) \in \mathcal{D}(\mathcal{H}), \quad a_{1}>a_{2}>\ldots>0
$$

- skew-symmetric matrix-eigenvalue :

$$
g_{i, j}=a_{j}-a_{i}
$$

- (sign) assumption :

$$
\forall k, \ell \in \mathbb{N}, k \geq \ell,-g_{\ell, k} \geq 0
$$

- (lower bound) assumption :

$$
\forall \ell \in \mathbb{N}, \forall j \neq \ell,\left|g_{\ell, j}\right| \geq \min \left(\left|a_{\ell}-a_{\ell-1}\right|,\left|a_{\ell}-a_{\ell+1}\right|\right)
$$

Example 2: Toda's choice

$$
G_{\text {Tod }}(H)=H^{-}-\left(H^{-}\right)^{\star}, \quad H^{-}=\sum_{1 \leq i \leq j} h_{i, j} e_{i}^{*} e_{j}
$$

- skew-symmetric matrix-eigenvalue :

$$
g_{i, j}=-1, \quad i<j
$$

- (sign) assumption :

$$
\forall k, \ell \in \mathbb{N}, k \geq \ell,-g_{\ell, k} \geq 0
$$

- (lower bound) assumption :

$$
\forall \ell \in \mathbb{N}, \forall j \neq \ell,\left|g_{\ell, j}\right| \geq 1
$$

Example 3: Wegner's choice

$$
G_{\mathrm{Weg}}(H)=[H, \operatorname{diag}(H)]
$$

- $G_{\text {Weg }} \notin \mathcal{L}\left(\mathcal{S}_{2}(\mathcal{H}), \mathcal{A}_{2}(\mathcal{H})\right)$
- but $G_{\text {Weg }}\left(\mathcal{S}_{2}(\mathcal{H})\right) \subset \mathcal{A}_{2}(\mathcal{H})$ therefore the flow is unitarily equivalent and global.
- diagonal terms follow the dynamic:

$$
h_{i, i}^{\prime}=\sum_{j=0}^{+\infty} \underbrace{\left(h_{i, i}-h_{j, j}\right)}_{g_{i, j}(t)}\left|h_{i j}\right|^{2}
$$

- What about (sign) and (lower bound) assumptions ?

If for large time, the diagonal terms ($h_{\ell, \ell}$) become "sufficiently" distinct, both assumptions are valid.

Outline

Introduction

Main result

Bracket flows

Global existence and isospectrality
Quadratic bracket flows
Several examples

The Toda's choice
A more specific result
Relation with the discrete QR algorithm
Numerical examples

More about the Toda flow : $G(H)=H^{-}-\left(H^{-}\right)^{\star}$.

Proposition

Assume that $H_{0} \in \mathcal{L}_{2}(\mathcal{H})$ (not necessarily symmetric) is diagonalizable with eigenvalues $\left(\lambda_{j}\right)_{j \geq 0}$ such that

$$
\operatorname{Re} \lambda_{0}>\operatorname{Re} \lambda_{1}>\ldots
$$

Let us also assume that we may find $P \in \mathcal{L}(\mathcal{H})$ such that $P H_{0} P^{-1}=\operatorname{diag}\left(\lambda_{j}\right)$ and such that all the minors of $P: P_{J}=\left(\left\langle P e_{i}, e_{j}\right\rangle\right)_{0 \leq i, j \leq J}$ are invertible.

For $\ell \in \mathbb{N}$, we denote $\delta_{\ell}=\min _{0 \leq j \leq \ell} \operatorname{Re}\left(\lambda_{j}-\lambda_{j+1}\right)$, then

$$
H(t) e_{\ell}-\sum_{j=\ell+1}^{+\infty}\left\langle H(t) e_{\ell}, e_{j}\right\rangle e_{j}=\lambda_{\ell} e_{\ell}+\mathcal{O}\left(e^{-t \delta_{\ell}}\right)
$$

- Find exponentially fast eigenvalues of any Hilbert-Schmidt operator
- If $H(0)$ is symmetric, then $H(t)$ converges to a diagonal operator H_{∞} that has exactly the same eigenvalues as H_{0}
- Even in infinite dimension no eigenvalue is lost in the limit !

Relation with the discrete QR algorithm

1988 Chu and Norris proposed an abstract decomposition of the flow

$$
\begin{gathered}
H^{\prime}(t)=\left[H(t), G_{\mathrm{Tod}}(H(t))\right], \quad H(0)=H_{0} \in \mathcal{L}_{2}(\mathcal{H}) \\
g_{1}^{\prime}(t)=g_{1}(t) G_{\mathrm{Tod}}(H(t)), \\
g_{2}^{\prime}(t)=\left(H(t)-G_{\text {Tod }}(H(t))\right) g_{2}(t), \quad g_{1}(0)=\mathrm{Id} \\
\text { so that } \\
H(t)=g_{2}(0)=\mathrm{Id} \\
e^{t H_{0}}=g_{1}(t) g_{2}(t), \quad e_{0} g_{1}(t)=g_{2}(t) H_{0} g_{2}^{-1}(t) \\
\end{gathered}
$$

Relation with the discrete QR algorithm

1988 Chu and Norris proposed an abstract decomposition of the flow

$$
\begin{gathered}
H^{\prime}(t)=\left[H(t), G_{\text {Tod }}(H(t))\right], \quad H(0)=H_{0} \in \mathcal{L}_{2}(\mathcal{H}) \\
g_{1}^{\prime}(t)=g_{1}(t) G_{\text {Tod }}(H(t)), \\
g_{2}^{\prime}(t)=\left(H(t)-G_{\text {Tod }}(H(t))\right) g_{2}(t), \\
\text { so that } \\
H(t)=g_{1}(t)^{-1} H_{0} g_{1}(t)=g_{2}(t) H_{0} g_{2}^{-1}(t) \\
\\
e^{t H_{0}}=g_{1}(t) g_{2}(t), \quad e^{t H(t)}=g_{2}(t) g_{1}(t)
\end{gathered}
$$

- $G_{\text {Tod }}(H)=H_{-}-H_{-}^{\star} \in \mathcal{A}(\mathcal{H})$ therefore $g_{1}(t) \in \mathcal{U}(\mathcal{H})$
- $H-G_{\text {Tod }}(H)=H_{+}+H_{-}^{\star}$ is upper triangular and so is $g_{2}(t)$

Relation with the discrete QR algorithm

1988 Chu and Norris proposed an abstract decomposition of the flow

$$
\begin{array}{rlr}
H^{\prime}(t)=\left[H(t), G_{\text {Tod }}(H(t))\right], & H(0)=H_{0} \in \mathcal{L}_{2}(\mathcal{H}) \\
g_{1}^{\prime}(t) & =g_{1}(t) G_{\text {Tod }}(H(t)), & g_{1}(0)=\mathrm{Id} \\
g_{2}^{\prime}(t) & =\left(H(t)-G_{\text {Tod }}(H(t))\right) g_{2}(t), & g_{2}(0)=\mathrm{Id}
\end{array}
$$

so that

$$
H(t)=g_{1}(t)^{-1} H_{0} g_{1}(t)=g_{2}(t) H_{0} g_{2}^{-1}(t)
$$

$$
e^{t H_{0}}=g_{1}(t) g_{2}(t), \quad e^{t H(t)}=g_{2}(t) g_{1}(t)
$$

- $G_{\text {Tod }}(H)=H_{-}-H_{-}^{\star} \in \mathcal{A}(\mathcal{H})$ therefore $g_{1}(t) \in \mathcal{U}(\mathcal{H})$
- $H-G_{\text {Tod }}(H)=H_{+}+H_{-}^{\star}$ is upper triangular and so is $g_{2}(t)$
- at $t=1: e^{H_{0}}=g_{1}(1) g_{2}(1)$ is a QR factorization of $e^{H_{0}}$ and $e^{H(1)}=g_{2}(1) g_{1}(1)$ is then the first iterate of the QR algorithm
- Toda flow \simeq sampling of the discrete algorithm (up to a change in $g_{2}(0)$ to ensure corresponding normalization choices in the diagonal of $g_{2}(1)$)

Relation with the discrete QR algorithm

1988 Chu and Norris proposed an abstract decomposition of the flow

$$
\begin{aligned}
H^{\prime}(t)=\left[H(t), G_{\mathrm{Tod}}(H(t))\right], & H(0)=H_{0} \in \mathcal{L}_{2}(\mathcal{H}) \\
g_{1}^{\prime}(t)=g_{1}(t) G_{\mathrm{Tod}}(H(t)), & g_{1}(0)=\mathrm{Id} \\
g_{2}^{\prime}(t)=\left(H(t)-G_{\mathrm{Tod}}(H(t))\right) g_{2}(t), & g_{2}(0)=\mathrm{Id}
\end{aligned}
$$

so that

$$
H(t)=g_{1}(t)^{-1} H_{0} g_{1}(t)=g_{2}(t) H_{0} g_{2}^{-1}(t)
$$

$$
e^{t H_{0}}=g_{1}(t) g_{2}(t), \quad e^{t H(t)}=g_{2}(t) g_{1}(t)
$$

- $G_{\text {Tod }}(H)=H_{-}-H_{-}^{\star} \in \mathcal{A}(\mathcal{H})$ therefore $g_{1}(t) \in \mathcal{U}(\mathcal{H})$
- $H-G_{\text {Tod }}(H)=H_{+}+H_{-}^{\star}$ is upper triangular and so is $g_{2}(t)$
- at $t=1: e^{H_{0}}=g_{1}(1) g_{2}(1)$ is a QR factorization of $e^{H_{0}}$ and $e^{H(1)}=g_{2}(1) g_{1}(1)$ is then the first iterate of the QR algorithm
- Toda flow \simeq sampling of the discrete algorithm (up to a change in $g_{2}(0)$ to ensure corresponding normalization choices in the diagonal of $g_{2}(1)$)
- $\operatorname{spec}\left(\mathrm{e}^{H_{0}}\right)=\left\{\mathrm{e}^{\lambda_{j}}\right\}$ with descreasing moduli (convergence rate)
- Remark : this can be done for many matrix factorization : QR, LU, Cholesky.

Numerical examples

Finite dimension case :

- strong convergence to the limit
- alternative : compactness of $\mathcal{U}(\mathcal{H})$
- linearization of the flow in $\mathcal{U}(\mathcal{H})$ around U_{∞}, parameterized by its Lie algebra $\mathcal{A}(\mathcal{H})$
- \Rightarrow exponential convergence, whatever is the stable manifold in consideration.

Datas for the computations :

- Initial data : $H_{0}=Q\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 9 & 0 & 0 \\ 0 & 0 & 0 & 16 & 0 \\ 0 & 0 & 0 & 0 & 25\end{array}\right) Q^{\star}$ where $Q=\exp \left(\begin{array}{cccc}0 & -1 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & 1 & 0 & -1 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 \\ \hline\end{array}\right)$
- G_{Br} is defined from $A=\left(\begin{array}{lllll}5 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$
- The numerical solutions are computed using adaptive 4th-order Runge-Kutta scheme.
- Test the three flows presented before.

Brockett's choice

$H(t) \rightarrow H_{\infty}=\operatorname{diag}([25,16,9,4,1])$
Diagonal terms are sorted in a descending order, w.r.t to A

$$
\text { spec } \mathrm{d} F_{H_{\infty}}=\left(\begin{array}{ccccc}
0 & -9 & -32 & -63 & -96 \\
-9 & 0 & -7 & -24 & -45 \\
-32 & -7 & 0 & -5 & -16 \\
-63 & -24 & -5 & 0 & -3 \\
-96 & -45 & -16 & -3 & 0
\end{array}\right)
$$

Brockett - Convergence of diagonal entries of $H(t)$

Brockett - Exponential convergence with rate γ

Toda's choice

$$
\text { spec } \mathrm{d} F_{H_{\infty}}=\left(\begin{array}{ccccc}
0 & -9 & -16 & -21 & -24 \\
-9 & 0 & -7 & -12 & -15 \\
-16 & -7 & 0 & -5 & -8 \\
-21 & -12 & -5 & 0 & -3 \\
-24 & -15 & -8 & -3 & 0
\end{array}\right)
$$

Wegner's choice

$H(t) \rightarrow H_{\infty}=\operatorname{diag}([4,9,16,25,1])$

$$
\begin{gathered}
\mathrm{d} F_{H_{\infty}}\left(E_{i, j}\right)=-\left(\lambda_{i}-\lambda_{j}\right)^{2} E_{i, j} . \\
\text { spec } \mathrm{d} F_{H_{\infty}}=\left(\begin{array}{cccc}
0 & -25 & -144 & -441 \\
-25 & 0 & -49 & -256 \\
-64 \\
-144 & -49 & 0 & -81 \\
-441 & -256 & -81 & 0 \\
-9 & -64 & -225 & -576 \\
-976
\end{array}\right) .
\end{gathered}
$$

Wegner - Convergence of diagonal entries of $H(t)$

Wegner - Exponential convergence with rate γ

Brockett's choice - other stable manifold

Other initial data : $\tilde{H}_{0}=\tilde{Q}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 16 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \quad \tilde{Q}^{\star}$, where $Q=\exp \left(\begin{array}{ccccc}0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & -1 & -1 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 1 & 1 & 0\end{array}\right)$.

- $\tilde{H}(t)=\left(\begin{array}{cc}1 & (0) \\ (0) & K(t)\end{array}\right)$ with $\operatorname{spec}(K(t))=\{4,9,16,25\}$.
- The (floating-point arithmetic) numerical method preserves this particular subspace
- $H(t) \rightarrow H_{\infty}=\operatorname{diag}([1,25,16,9,4])$ with exponential rate $\mathcal{O}\left(e^{-5 t}\right)$

$$
\text { spec } \mathrm{d} F_{H_{\infty}}=\left(\begin{array}{ccccc}
0 & 24 & 30 & 24 & 12 \\
24 & 0 & -9 & -32 & -63 \\
30 & -9 & 0 & -7 & -24 \\
24 & -32 & -7 & 0 & -5 \\
12 & -63 & -24 & -5 & 0
\end{array}\right) \text {. }
$$

Grub＇s up ！

À table！

Ăn trưa được phục vụ ！
午餐已送达

