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A little history
Hint around the power method : Consider A ∈ Mn(C), x0, y0 ∈ Cn.
For z sufficiently large :

f(z) = 〈x0, (zI −A)−1y0〉 =
+∞∑
ν=0

=:sν︷ ︸︸ ︷
〈x0, Aνy0〉
zν+1

=
〈x0, adj(zI −A)y0〉

det(zI −A) .

Under some assumptions on x0, y0 and on A:

sν+1

sν
−→
ν→∞

λ1, eigenvalue of maximum modulus.

More generaly : Being given the sequence of moments (sν), find all the
eigenvalues of a matrix A ?

1892 Hadamard extended the above idea to obtain any of the pole of a
meromorphic function from its moments, using the sequence of Hankel
determinants of the form |sν+i+j |0≤i,j≤k.

1931 Aitken rediscovered a more algorithmic version of the method.

1954 Rutishauser introduced qd (quotient-difference) algorithm, avoiding
Hankel determinants, reducing ill-posedness of the method, and then
reformulated (first for tridiagonal matrices) into the LR algorithm
(Gauss LU decomposition)

LkRk := Ak, Ak+1 := RkLk

Hadamard

Rutishauser
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1961 Francis, Kublanovskaya : QR algorithm

QkRk := Ak, Ak+1 := RkQk

Ak+1 = Q?kAkQk = (Q1 . . . Qk)
?A(Q1 . . . Qk)

spec Ak = spec A

Francis, Wilkinson : Fast variants with shifts

QkRk := Ak − σkIn, Ak+1 := RkQk + σkIn

1968 Colette Lebaud :

Remarques sur la convergence de la méthode Q.R., Publications
mathématiques et informatique de Rennes, Tome (1967-1968), Exposé
no. 5, p.1–17.

PhD Univ. Rennes : Contribution à l’étude de l’algorithme QR, 1971.

Kublanovskaya

Francis

Lebaud
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Common convergence results for the QR algorithm

Theorem

Let A ∈ Mn(C) and P ∈ GLn(C) such that PAP−1 = diag(λ1, . . . , λn) = D with

|λ1| > |λ2| > . . . > |λn| > 0.

Assume moreover that P admits a LU factorization. Then

Ak −→
k→∞

λ1 (?)k
. . .

(0) λn

 .

The lower part converge as O(µk) with µ = max
1≤`≤n−1

∣∣∣∣λ`+1

λ`

∣∣∣∣.
• In presence of "same modulus" distinct eigenvalues: convergence "by block".
• Iterations preserve symmetry and Hessenberg structure.
• Convergence is quadratic for the Wilkinson shifted version, and then cubic for

symmetric matrices.
• The algorithm is equivalent to the orthogonal simultaneous power iteration (this

makes the assumption P = LU and improved convergence rates more
intelligible)
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Continuous dynamical systems
1988 Chu and Norris, Isospectral flows and abstract matrix factorizations, SIAM J.

Numer. Anal.

1991 Brockett, Dynamical systems that sort lists, diagonalize matrices and solve linear
programming problems, Linear Algebra Appl.

1994 Wegner, Flow equations for Hamiltonians, Ann. Physik.

2010 Bach and Bru, Rigorous foundations of the Brockett-Wegner flow for operators,
J. Evol. Equ.

2016 Bach and Bru, Diagonalizing quadratic bosonic operators by non-autonomous
flow equation, Memoirs AMS.

References for some history :
Gutknecht and Parlett, From qd to LR, or, How were the qd and LR algorithms
discovered?, IMA J. Numer. Anal. 31 (2011).
Golub and van der Vorst, Eigenvalue computation in the 20th century, J. Comput.
Appl. Math. 123 (2000).

Our aim :
Get a unified proof for different bracket flow ODEs : H ′ = [H,G(H)],
acting on Hilbert-Schmidt operators,
and understand the QR method !
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Some notations

L(H) bounded operators on a separable Hilbert spaceH
S(H), A(H), U(H) symmetric, skew-symmetric and unitary operators respectively

L2(H) Hilbert-Schmidt (compact) operators onH, with the norm ‖ · ‖HS :

‖H‖2HS = tr(H?H) =
∑
n≥0

‖Hen‖2 =

+∞∑
n=0

|λn(H)|2

S2(H) = S(H) ∩ L2(H)
A2(H) = A(H) ∩ L2(H)

(en)n∈N a Hilbert basis ofH
hi,j = 〈Hei, ej〉, for any H ∈ L(H)
D(H) bounded diagonal operators with respect to the Hilbert basis:

T ∈ D(H)⇔ ∀n ∈ N, ∃λn ∈ R, T en = λnen

Ei,j (i ≤ j) canonical Hilbert basis of S2(H)
E±i,j (i < j) canonical Hilbert basis of A2(H)
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Main result

Consider H ∈ C1(R,L2(H)) such that

i) the function t 7→ ‖H(t)‖HS is bounded,

ii) the family (hi,j)i,j∈N is balanced (symmetry-like property, uniform in t)

iii) there exists a pointwise bounded and balanced family of measurable functions
(gi,j)i,j∈N defined on R such that

∀t ∈ R, ∀i ∈ N, h′i,i(t) =

+∞∑
j=0

gi,j(t)|hi,j(t)|2 .

Suppose that there exists T > 0 and a sign sequence (ε`)`∈N ∈ {−1, 1}N, such that

∀t ≥ T, ∀k, ` ∈ N, k ≥ `, ε`g`,k(t) ≥ 0 . (sign)

Then we have the integrability property

∀` ∈ N,
+∞∑
j=0

∫ +∞

T

|g`,j(t)||h`,j(t)|2dt < +∞ ,

and the diagonal terms h`,`(t) converges at infinity.
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Ideas of the proof

• Proof by induction on ` ∈ N, using monotonicity arguments

• Limit of the h`,` coefficient and integrability of the series is controled from the
next lemma

Lemma

Consider h ∈ C1(R+) a real-valued bounded function, F ∈ L1(R+) and G a
nonnegative measurable function defined on R+ such that

∀t ≥ 0, h′(t) = F (t) +G(t).

Then, the function G is integrable and h converges to a finite limit at infinity.

∫ x

0

G(t) dt = h(x)− h(0)−
∫ x

0

F (t)dt ≤ 2 sup
R+

|h|+
∫ +∞

0

|F (t)|dt .

Therefore G ∈ L1(R+) and lim
x→+∞

h(x) = h(0) +

∫ +∞

0

(F (t) +G(t))dt .
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Main result (2)

Under the additional semi-uniform lower bound condition

∀` ∈ N, ∃c` > 0, ∀j 6= `, ∀t ≥ T, |g`,j(t)| ≥ c` , (lower bound)

we have the stronger integrability result∑
j 6=`

∫ +∞

T

|h`,j(t)|2 dt =
∫ +∞

T

‖H(t)e` − h`,`(t)e`‖2dt < +∞ .

Suppose moreover that, for any ` ∈ N, the function t 7→ ‖H ′(t)e`‖ is bounded, then
for any ` ∈ N, H(t)e` converges to h`,`(∞)e`.
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Global existence and isospectrality

Theorem

Suppose G : S(H)→ A(H) is locally Lipschitz, then any solution to the following
Cauchy problem

H ′ = [H,G(H)] , H(0) = H0 ∈ S2(H) .

admits a unique global solution H ∈ C1(R,S2(H)) and there exists
U ∈ C1(R,U(H)) such that

H(t) = U(t)?H0U(t), t ∈ R.

Proof: As long H(t) is defined, consider the following Cauchy problem:∣∣∣∣∣ U
′(t) = U(t)G(H(t)),

U(0) = Id .

Then U(t) ∈ U(H) and H(t) = U?(t)H0U(t).
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Quadratic bracket flows

Consider H ′ = [H,G(H)], in the case G ∈ L (S2(H),A2(H)) .

The map G is said to be diagonalizable when there exists a Hilbertian basis (en)n∈N
and a skew-symmetric family (gi,j) such that G(Ei,j) = gi,jE

±
i,j .

We then have
h′i,i(t) = −2

∑
j

gi,j |hi,j(t)|2,

and prove from the main result :

Corollary

Let G ∈ L (S2(H),A2(H)) be a diagonalizable map such that its matrix-eigenvalue
satisfies (sign) and (lower bound).
Then the unique global solution H ∈ C1(R,S2(H)) converges weakly in S2(H) to
some H∞ ∈ D2(H).
Moreover, any diagonal term α of H∞ with multiplicity m is an eigenvalue of H0 of
multiplicity at least m.
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Example 1: Brockett’s choice

GBr(H) = [H,A], where A = diag(a1, . . .) ∈ D(H), a1 > a2 > . . . > 0

• skew-symmetric matrix-eigenvalue :

gi,j = aj − ai

• (sign) assumption :
∀k, ` ∈ N, k ≥ `, −g`,k ≥ 0

• (lower bound) assumption :

∀` ∈ N, ∀j 6= `, |g`,j | ≥ min(|a` − a`−1|, |a` − a`+1|)
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Example 2: Toda’s choice

GTod(H) = H− − (H−)?, H− =
∑

1≤i≤j

hi,je
∗
i ej

• skew-symmetric matrix-eigenvalue :

gi,j = −1, i < j

• (sign) assumption :
∀k, ` ∈ N, k ≥ `, −g`,k ≥ 0

• (lower bound) assumption :

∀` ∈ N, ∀j 6= `, |g`,j | ≥ 1
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Example 3: Wegner’s choice

GWeg(H) = [H, diag(H)]

• GWeg /∈ L (S2(H),A2(H))
• but GWeg(S2(H)) ⊂ A2(H) therefore the flow is unitarily equivalent and global.

• diagonal terms follow the dynamic:

h′i,i =

+∞∑
j=0

(hi,i − hj,j)︸ ︷︷ ︸
gi,j(t)

|hij |2 .

• What about (sign) and (lower bound) assumptions ?
If for large time, the diagonal terms (h`,`) become "sufficiently" distinct, both
assumptions are valid.
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More about the Toda flow : G(H) = H− − (H−)? .

Proposition

Assume that H0 ∈ L2(H) (not necessarily symmetric) is diagonalizable with
eigenvalues (λj)j≥0 such that

Reλ0 > Reλ1 > . . .

Let us also assume that we may find P ∈ L(H) such that PH0P
−1 = diag(λj) and

such that all the minors of P : PJ = (〈Pei, ej〉)0≤i,j≤J are invertible.

For ` ∈ N, we denote δ` = min0≤j≤` Re(λj − λj+1), then

H(t)e` −
+∞∑
j=`+1

〈H(t)e`, ej〉ej = λ`e` +O
(
e−tδ`

)
.

• Find exponentially fast eigenvalues of any Hilbert-Schmidt operator

• If H(0) is symmetric, then H(t) converges to a diagonal operator H∞ that has
exactly the same eigenvalues as H0

• Even in infinite dimension no eigenvalue is lost in the limit !
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Relation with the discrete QR algorithm
1988 Chu and Norris proposed an abstract decomposition of the flow

H ′(t) = [H(t), GTod(H(t))] , H(0) = H0 ∈ L2(H) ,

g′1(t) = g1(t)GTod(H(t)) , g1(0) = Id ,

g′2(t) = (H(t)−GTod(H(t)))g2(t) , g2(0) = Id .

so that

H(t) = g1(t)
−1H0g1(t) = g2(t)H0g

−1
2 (t)

etH0 = g1(t)g2(t) , etH(t) = g2(t)g1(t) .

• GTod(H) = H− −H?
− ∈ A(H) therefore g1(t) ∈ U(H)

• H −GTod(H) = H+ +H?
− is upper triangular and so is g2(t)

• at t = 1 : eH0 = g1(1)g2(1) is a QR factorization of eH0

and eH(1) = g2(1)g1(1) is then the first iterate of the QR algorithm
• Toda flow ' sampling of the discrete algorithm (up to a change in g2(0) to

ensure corresponding normalization choices in the diagonal of g2(1))
• spec(eH0) = {eλj} with descreasing moduli (convergence rate)
• Remark : this can be done for many matrix factorization : QR, LU, Cholesky.
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Numerical examples
Finite dimension case :

• strong convergence to the limit

• alternative : compactness of U(H)
• linearization of the flow in U(H) around U∞, parameterized by its Lie algebra
A(H)

• ⇒ exponential convergence, whatever is the stable manifold in consideration.

Datas for the computations :

• Initial data : H0 = Q

(
1 0 0 0 0
0 4 0 0 0
0 0 9 0 0
0 0 0 16 0
0 0 0 0 25

)
Q? where Q = exp

( 0 −1 −1 −1 −1
1 0 −1 −1 −1
1 1 0 −1 −1
1 1 1 0 −1
1 1 1 1 0

)

• GBr is defined from A =

(
5 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

)

• The numerical solutions are computed using adaptive 4th-order Runge-Kutta
scheme.

• Test the three flows presented before.
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Brockett’s choice

H(t)→ H∞ = diag([25, 16, 9, 4, 1])
Diagonal terms are sorted in a descending order, w.r.t to A

spec dFH∞ =

( 0 −9 −32 −63 −96
−9 0 −7 −24 −45
−32 −7 0 −5 −16
−63 −24 −5 0 −3
−96 −45 −16 −3 0

)
.
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Toda’s choice

spec dFH∞ =

( 0 −9 −16 −21 −24
−9 0 −7 −12 −15
−16 −7 0 −5 −8
−21 −12 −5 0 −3
−24 −15 −8 −3 0

)
.
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Wegner’s choice
H(t)→ H∞ = diag([4, 9, 16, 25, 1])

dFH∞(Ei,j) = −(λi − λj)2Ei,j .

spec dFH∞ =

( 0 −25 −144 −441 −9
−25 0 −49 −256 −64
−144 −49 0 −81 −225
−441 −256 −81 0 −576
−9 −64 −225 −576 0

)
.
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Brockett’s choice – other stable manifold

Other initial data : H̃0 = Q̃

(
1 0 0 0 0
0 4 0 0 0
0 0 9 0 0
0 0 0 16 0
0 0 0 0 25

)
Q̃?, where Q = exp

(
0 0 0 0 0
0 0 −1 −1 −1
0 1 0 −1 −1
0 1 1 0 −1
0 1 1 1 0

)
.

• H̃(t) =

(
1 (0)
(0) K(t)

)
with spec(K(t)) = {4, 9, 16, 25}.

• The (floating-point arithmetic) numerical method preserves this particular
subspace

• H(t)→ H∞ = diag([1, 25, 16, 9, 4]) with exponential rate O(e−5t)

spec dFH∞ =

( 0 24 30 24 12
24 0 −9 −32 −63
30 −9 0 −7 −24
24 −32 −7 0 −5
12 −63 −24 −5 0

)
.
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Grub’s up !

À table !

Ăn trưa được phục vụ !

午餐已送达
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