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- positivity of the solution is preserved for all time
- conservation or dissipation or at least control of the total
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» OLD (>'80) AND RECENT RESULTS- OPEN PROBLEMS

» Lots of such systems in applications: chemical morphogenesis
('Brusselator’), Glycolosis, Gray-Scott models, combustion,
Lotka-Volterra systems, epidemiology (SIR), reversible
chemical reactions,...

» The two properties provide an a priori bound in L for all time.
QUESTION: how does this help for global existence 777
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» A question raised by R.H. Martin (Raleigh, North Carolina,
USA) in 1980.

» Does global existence of classical solutions hold for the
following 2 x 2 reaction-diffusion system set on a good
bounded domain Q ¢ RN 777

8tu1 — dlAul = —ulug,
atU2 — d2AU2 = ulug,
ui(0,-) =u? >0, i=1,2,
good boundary conditions on 0€2,
where di, d> € (0,+00), 5 € [1,4+00)
and u; = ui(t,x),t €[0, T],x€Q, i=1,2, T = 400 777,

» Let us choose homogeneous Neumann boundary conditions.



Quid of global existence 777

> d17d2 € (07 +OO)7 ﬁ € [17_'_00)

Oitn — di1Au = —ulug,
8tU2 — dQAUQ = ulug,
ui(0,)=u? >0, i=1,2,
Oyui =0, i=1,2 0n 0R.



Quid of global existence 777

> d17d2 € (07 +OO)7 ﬁ € [1,—{—00)

Ot — d1Au = —ulug,
8tU2 — d2AU2 = uluf,
ui(0,)=u? >0, i=1,2,
Oyui =0, i=1,2 0n 0R.

» Contains the O.D.E. case: u; = u;(t):

ui(t) = —upub,
uh(t) = uub,

ui(0) = u? € [0,+00) i = 1,2.



Quid of global existence 777

> d17d2 € (07 +OO)7 B € [1,+OO)

Ot — d1Au = —ulug,
8tu2 — d2AU2 = uluf,
ui(0,)=u? >0, i=1,2,
oyui =0, i =1,2 o0n 09.

» Contains the O.D.E. case: u; = u;(t):

ui(t) = —upub,
uh(t) = uub,

ui(0) = u? € [0,+00) i = 1,2.

» Local existence for the O.D.E. on a maximal interval [0, T*)
by Cauchy-Lipschitz theorem, and the solution is nonnegative.



Quid of global existence 777

> dlad2 € (07 +OO)7 B € [17+OO)

Ot — d1Au = —ulug,
8tu2 — d2AU2 = uluf,
ui(0,)=u? >0, i=1,2,
oyui =0, i =1,2 o0n 09.

» Contains the O.D.E. case: u; = u;(t):

ui(t) = —upub,
uh(t) = uub,

ui(0) = u? € [0,+00) i = 1,2.

» Local existence for the O.D.E. on a maximal interval [0, T*)
by Cauchy-Lipschitz theorem, and the solution is nonnegative.

> (u1+ w)(t) =0= (u1 + w)(t) = 9+ 13, vVt € [0, T)



Quid of global existence 777

> d17d2 € (07 +OO)7 B € [1,+OO)

Ot — d1Au = —ulug,
8tu2 — d2AU2 = uluf,
ui(0,)=u? >0, i=1,2,
oyui =0, i =1,2 o0n 09.

» Contains the O.D.E. case: u; = u;(t):

ui(t) = —upub,
uh(t) = uub,

ui(0) = u? € [0,+00) i = 1,2.

» Local existence for the O.D.E. on a maximal interval [0, T*)
by Cauchy-Lipschitz theorem, and the solution is nonnegative.

> (u1+ w)(t) =0= (u1 + w)(t) = 9+ 13, vVt € [0, T)

> = T =+o0!



Quid of global existence 777
» What about the full P.D.E. case?

8tU1 — dlAul = —ulug,
8tuz — d2AU2 = ulug,
ui(0,) = >0, i=1,2,
Oyui =0, i =1,2 on 08.



Quid of global existence 777
» What about the full P.D.E. case?

8tU1 — dlAul = —ulug,
atUQ — d2AU2 = ulug,
ui(0,) = >0, i=1,2,
Oyui =0, i =1,2 on 08.

P Local existence of classical solutions holds for
u? € L>(Q),i = 1,2 on a maximal interval [0, T*) by
Cauchy-Lipschitz type theorem [[fixed point theorem in
L>°((0, T) x Q)]] and the solution is nonnegative as well.



Quid of global existence 777
» What about the full P.D.E. case?

8tU1 — dlAul = —ulug,
atUQ — d2AU2 = ulug,
ui(0,) = >0, i=1,2,
Oyui =0, i =1,2 on 08.

P Local existence of classical solutions holds for
u? € L>(Q),i = 1,2 on a maximal interval [0, T*) by
Cauchy-Lipschitz type theorem [[fixed point theorem in
L>°((0, T) x Q)]] and the solution is nonnegative as well.

» Moreover T* = 400 if the L*°(Q2)-norm of u;(t) is bounded
on [0, T*).



Quid of global existence 777
» What about the full P.D.E. case?

8tU1 — dlAul = —ulug,
atUQ — d2AU2 = ulug,
ui(0,) = >0, i=1,2,
Oyui =0, i =1,2 on 08.

P Local existence of classical solutions holds for
u? € L>(Q),i = 1,2 on a maximal interval [0, T*) by
Cauchy-Lipschitz type theorem [[fixed point theorem in
L>°((0, T) x Q)]] and the solution is nonnegative as well.

» Moreover T* = 400 if the L*°(Q2)-norm of u;(t) is bounded
on [0, T*).

> Ifdy =dr =d, O(tn + 2) —dA(u1 + ) =0

= [|(u1 + w2)(t) [ o) < lu? + 63|10y, VE € [0, T%)
= T"=40c0!
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» What about the full P.D.E. case?

8tU1 — dlAul = —ulug,
atUQ — d2AU2 = uluzﬁ,
ui(0,) = >0, i=1,2,
Oyui =0, i =1,2 on 08.

P Local existence of classical solutions holds for
u? € L>(Q),i = 1,2 on a maximal interval [0, T*) by
Cauchy-Lipschitz type theorem [[fixed point theorem in
L>°((0, T) x Q)]] and the solution is nonnegative as well.

» Moreover T* = 400 if the L*°(Q2)-norm of u;(t) is bounded
on [0, T*).

> Ifdy =dr =d, O(tn + 2) —dA(u1 + ) =0

= [[(un + w2) ()l 1o () < [J6f + W1~ (0), Yt € [0, T)
= T = 400!

» What happens when di # dp 777.
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u,-(O, ) = ulo() >0,
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d
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Same question for the family of systems with the two main
properties (P)+(M) which yield the same estimates

Vi=1,...m
O,uj — diAuj = fi(uy, ug, ..., Upm),
(S) 8Vu,- = 07

ui(0,-) = u?(-) >0,

di € (0,4+00), fi : [0,00)™ — R locally Lipschitz continuous,
» (P): Positivity (nonnegativity) is preserved
> (M): >, fi<0
» or more generally

(M’) Vr € [0, oo[™, Z1§igm aifi(r) < C[1+ Zlgigm ril
for some a; > 0



Vi=1,....m
(5) Otu,- — diAu; = fi(Ul7 uz, ..., Um) in Qr:= (Oa T) X Qa
oyui =0 onXr:=(0,T) x 09,

ui(0,-) = u?(:) > 0.

» (P) Preservation of Positivity: Vi =1,....m
Vr=(r,...,tm) € [0,00[™, fi(r1,., ri—1,0,Fix1, ey rm) >0,
=" quasi-positivity " of f = (fi)1<i<m.

rn
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Vi=1,...m
(S) 8tu,- — d,'AU,‘ = f,-(u17 uz, ..., um) in QT
Oyui =0 onXr

u;(0,-) = u?(-) > 0.

» (P) Preservation of Positivity: Vi =1,...,m
Vr e [0 +OO[ (r1,...,r,-_1,0, r,-+1,...,rm) > 0.

> (M): > e filr1, o, rm) < 0 = ’"Control of the Total
Mass’:

vt >0, / u,txdx</
QZ Q

1<i<r 1<i<r

Add up, integrate on £, use fﬂ Au; = fasz O, ui = 0:
[ oSS uold= [ 3 fwax <o,
Q ol

» = [}(Q)- a priori estimates, uniform in time.
» Remark: L'-bound for all time with (M’)



QUESTION:

What about Global Existence of solutions
under assumption (P)+4(M)??
or more generally (P)+ (M’) 77

[m] [l = = = o>



Several approaches and techniques

L*°-approach: local existence
An LP-approach

Blow up may occur...

An L!'-approach

L Log L may also be involved
A surprising L?-estimate

And more about quadratic systems

vVvVvvyVvYvyVvyVvyYyvyy

...based on various properties of the Heat Operator and of
diffusion operators with (only) bounded coefficients

+ OPEN PROBLEMS

v
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Local existence in L*° for systems

Vi=1,..m
(S) O,ui — diAu; = fi(ur, uz, ..., Um) in Qr
Oyui =0 onXr

ui(0,) = uf () > 0.

» Theorem (& la Cauchy-Lipschitz dans L*).
Let u® = (u?)1<i<m € L(Q)T™. Then, there exist a
maximum time T* > 0 and v = (u1, ..., um) unique classical
nonnegative solution of (S) on [0, T*). Moreover,

sup {max ||Ui(t)||Loo(Q)} < 4oo = [T"+ o0].
te[0,T*) d

> COfO"ary. If di == d fOf a” I = 17 cey m, then T* = +o0.
» Proof: 0,(> ; ui) —dA(D_; ui) <0.

= || Z ui(t)ll o) < || Z uiol Lo ()
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Recall the R.H. Martin's problem (5 € [1, +0))
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(5)
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The LP-approach
» Recall the R.H. Martin's problem (5 € [1, +0))

(91_»U2 - d2AU2 = ulug

8tu1 - dlAul = —ulug (S 0)
(5)
Oyup=00n09, i =1,2.

By maximum principle ||u1(t)||Lo(a) < [|6f]]1o(q)-

We have : Orup — doAup = —(0run — diAuwy).

Or: "up = (0 — b A) (=0 + diA) uy" [=: Au|

LP-Main Lemma: the operator A is continuous from LP(Q7)
into itself for all p € (1,+00) and all T > 0.

= |lu2]lLp(@pv) < +00,Vp < +o0.

v

= [|u165 | La(@y) < +00,Yq < +oo,
» Choose g > (N + 1)/2 and use the equation in uy to deduce:

v

= |lu2ll oo (@pe) < +00 and T* = +o0 !
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» More generally, [s. Hollis, M.P., RH. Martin '87]
Ot — db Aup<adiuy + bAuy, up, >0+ B.C.,a,be R,
implies the existence of C = C(p, T,Q,u?, a, b) such that:
Vp € (1,00), [[u2ll(qry < CI1+ [lualer(on)]-
» Solve the dual problem

(O + hAY) =0 € G(Qr).0 >0,
Y(T)=0, d,v=00nXr.

» Multiplying the inequality in up by ¥ > 0 leads to:

/ 1O < /(—au? + u9)(0) + a/ 1O + (ad> + b) u A,
Qr Q

Qr Qr
» By the LP'-maximal regularity theory for the heat operator
1AY]| 1 (gry + (0| 1o (@) < ClIOIl e (@)-

> = UQT U2@‘ < CIL A+ lillr@nlI©ll s (@) = LP(Qr)-estimate on
uy by duality.



Extensions and limits of the LP-approach

Yi=1,...m
8tu,- — d,'AU,' = f,‘(U1, u, ..., Um) in QT
8,,u,- =0

on ):T
ui(0,7) = uf () > 0

» The same approach provides global existence for the general system
when a triangular structure holds like

1<0, A+H<0,A+hH+1<0,..

in which case we have, with @ = Q7~ and for all p € (1, 00)
]l (@) < 00, lalle(q) < Cllutllie(q)
luslle@) < Clllunlle@) + llu2lle()]s ---



Extensions and limits of the LP-approach

Yi=1,...m
8tu,- — d,'AU,' = f,‘(U1, u, ..., Um) in QT
Oyui =0 onXYr

ui(0,-) = u?(-) > 0.

» The same approach provides global existence for the general system
when a triangular structure holds like

1 <0, A+H<0,HA+H+£1<0,..
in which case we have, with @ = Q7~ and for all p € (1, 00)
utllies(@) < 00, lu2ller(@) < Cllutllie(q)

lusller(e) < Clllualle(@) + w2l -
» [J. Morgan, W. Fitzgibbon, et al. '89] More generally it applies to m x m
systems if there exists a triangular invertible matrix @ with
nonnegative entries such that

Vre0,00)", Qf(r)<[1+ Y rlb,
1<i<m

for some b € R™ f = (f, ..., fm)" with at most palynomial growth.



Extension with advection and anisotropic diffusion

Oru; — div (Di(t, x)Vu; + Vi(t, x)u;) = fi(t, x, u),
S (Di(t,x)Vu; + Vi(t,x)u;) - v =0 on 09,
) w(0.)=u? >0,
D; = [d,-”‘} 1<k J<N symmetric elliptic, V; € RN.

» Theorem. [p. Bothe, A. Fischer, M.P., G. Rolland, '2016] Assume that
f = (f,..., fm) satisfies (P), (M’), the triangular structure and with

growth at most polynomial. Assume also that,
Vi, Vdk € 1> (0, T; L"(Q)) for some r > max{2, N},
d*e C(Qr), VT >0.
Then, there are global bounded solutions for (S).



Extension with advection and anisotropic diffusion

Oru; — div (Di(t, x)Vu; + Vi(t, x)u;) = fi(t, x, u),
S (Di(t,x)Vu; + Vi(t,x)u;) - v =0 on 09,
()Y wi(0,) = w? >0,

D; [d,-”‘} 1<k J<N symmetric elliptic, V; € RN.

» Theorem. [p. Bothe, A. Fischer, M.P., G. Rolland, '2016] Assume that
f = (A, ..., fm) satisfies (P), (M’), the triangular structure and with
growth at most polynomial. Assume also that,

Vi, Vdk € 1> (0, T; L"(Q)) for some r > max{2, N},
d*e C(Qr), VT >0.
Then, there are global bounded solutions for (S).

» The assumptions are so that L”/—regularity theory holds for each
dual problem [H. Amann, R. Denk-M. Hieber-J. Priiss, '05]

— [0:V + div (Di(t,x)VV¥)] + Vi(t,x) - V¥ = © € CG°((r, 7 + 0),
Di(r,x)VV-v=0¢€ C®((r,7 +J) x 0Q),

where § is small.



Application to the case of close d;'s

Vi=1,..m

(5) atu,- — d,'AU,‘ = f,-(ul, uz, ..., Um) in QT
Oyui =0 onXxr
ui(0,) = u?(:) > 0.

> We may write for d := min; d

iy 3 = maxX; d,'
{ (D25 ui) — dA(S; ui) i(di — d)Auj+ 32 f;
(2i(di — d)ui).
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(5) atu,- — d,'AU,‘ = f,-(ul, uz, ..., Um) in QT
Oyui =0 onXr

ui(0,) = u?(:) > 0.

> We may write for d := min; d;, d := max; d;
Oe(2oi i) = dAQZ;ui) = 32;(di — d)Auj+ 37, f,
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Vi=1,...m
(S) 8: up — d,'AUi = ﬁ'(uh uz, ..., Um) in QT
Oyui =0 onxr

ui(0,) = u?(:) > 0.

> We may write for d := min; d;, d := max; d;

{at(Z;Ui)—dA(Z ) =22(di = d)Aui + 3, f;
< A(i(d = d)uy).

» We deduce from the LP-Main Lemma that Vp € (1, +0o0)

{ 152 villrery < €L+ 2i(di — d)uillecon))
< C[1+(d - DX uillrgn)] -

> If the d!s are close enough so that C(d — d) < 1, then

I3 tillirgrn) < ClL = C(d — )] < +oo.



Application to the case of close d;'s

Vi=1,..m
(5) atu,- — d,'AU,‘ = f,-(ul, uz, ..., Um) in QT
Oyui =0 onXr

ui(0,) = u?(:) > 0.

> We may write for d := min; d;, d := max; d;

{at(Z;Ui)—dA(Z ) =22(di = d)Aui + 3, f;
< A(i(d = d)uy).

» We deduce from the LP-Main Lemma that Vp € (1, +0o0)

{ 152 villrery < €L+ 2i(di — d)uillecon))
< C[1+(d - DX uillrgn)] -

> If the d!s are close enough so that C(d — d) < 1, then

I3 tillirgrn) < ClL = C(d — )] < +oo.

» Whence global existence if, moreover, f; at most polynomial !
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Extensions and limits of the LP-approach

» [P-approach does not apply to

2

8tU1 — dlALll = —w e
2
(91_»112 — dzAU2 = ule“z

P neither to the system

— 3,2 2,3
Orup — diAup = u%u23— ulgug
Oty — dbAup = uf U3 — U U5

» and even not to the "better” system with A € (0,1)

Oty — diAuy = \uju3 — uf U [=: f(v)]
Orty — chAuy = 3 U3 — B3u3 [=: H(u)]

where : fi(u) + f(u) <0,
and also : fi(u) + Ah(u) <0



Finite time L>-blow up may appear with (M)+(P)!

Oety — doAup = fo(uy, up)

8tu1 - dlAul = ﬂ(ul, U2)
+ various "good” boundary conditions

» Theorem: [ schmiemp, 007 One can find 'polynomial’
nonlinearities f, g satisfying (P) and

(M) f+g <0, and also : 3\ € [0,1[,f + A\g <0,

for which T* < 400 with

Jm (e = fim, fjuz()]isa) = +oo.
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Finite time L>-blow up may appear with (M)+(P)!

Oety — doAup = fo(uy, up)

8tu1 - dlAul = ﬂ(ul, U2)
+ various "good” boundary conditions

» Theorem: [ schmiemp, 007 One can find 'polynomial’
nonlinearities f, g satisfying (P) and
(M) f+g <0, and also : 3\ € [0,1[,f + A\g <0,
for which T* < +00 with

Jm (e = fim, fjuz()]isa) = +oo.

» Blow up may appear even in space dimension N = 1 (with
high degree polynomial nonlinearities)

» Blow up may appear with any superquadratic growth 2 + € for
the f; (with high dimension N). Optimal ! [o. schmict-mp, 221



To proceed:

Look for weak solutions which are allowed to go out of L*(£2)
from time to time or even often ("Incomplete blow up™).

We ask the nonlinearities to be at least in L}(Q7):
fi(u) € L'(Qr)

and the solution is understood in the sense of distributions or of
the integral formula :

ui(t) = Sy (t)u? + /OtSd,.(t —s)fi(u(s))ds,

where Sg4.(t) is the semigroup generated by the Neumann
Laplacian —d;A.



An ['-approach

Vi=1,....m
0,uj — diAuj = fi(uy, up, ..., upm)
(S) 6l,u,- =0

ui(0,-) = u?(-) > 0.

» [l-Theorem. (uro3] Assume (P)+ (M’) hold. Assume
moreover that the following a priori estimate holds:

Wi=1,..m, / (u)] < C(T) < 400, VT € (0, +00).
Qr

Then, there exists a global weak solution for System (S),
even for all ug € L}(Q)T™ |



An ['-approach

Vi=1,....m
0,uj — diAuj = fi(uy, up, ..., upm)
(5) &,u,- =0

ui(0.) = ud(-) > 0.

» [l-Theorem. (uro3] Assume (P)+ (M’) hold. Assume
moreover that the following a priori estimate holds:

Wi=1,..m, / (u)] < C(T) < 400, VT € (0, +00).
Qr

Then, there exists a global weak solution for System (S),
even for all ug € L}(Q)T™ |

» Proof involves [ '-properties of the heat operator and
truncations techniques : for Ty(r) := inf{r, k}, we use the
equations satisfied by Ty(uj +n>_;; uj),n small.



Main ingredients in the proof of the L!-theorem
» Approximating f; by £ := m and u? by u?" = inf{(u?), n}

+—+ global approximate solutions uf with |[£,"(u")| () bounded
independently of n

Oeu! — diAul = £ (uf, ..., ull) on (0,00) x €,
(S)< Oyu? =00n(0,00) x 09,
UH(O, ) = U,Qn >0,

1



Main ingredients in the proof of the L!-theorem
» Approximating f; by £ := m and u? by u?" = inf{(u?), n}

+—+ global approximate solutions uf with |[£,"(u")| () bounded
independently of n

Oyu? =0 0n (0,00) x 09,
uf’(O, ) = U/On > Oa
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Oeu! — diAul = £ (uf, ..., ull) on (0,00) x €,
(5)

» Compactness of the mapping
(g, wo) € LY(Q7) x LY(Q) — w € L1(QT) where

Orw — dAw = g on Qr, w(0,-) = wy, dyw = 0 on 9N.

so that u” — u; in LY(Q7) and a.e. as n — +oo



Main ingredients in the proof of the L!-theorem
> Approximating f; by £ := W and u? by 9" :=inf{(u?),n

— global approximate solutions u! with ||£"(u )HU Q;) bounded
independently of n

Oeu! — diAul = £ (uf, ..., ull) on (0,00) x €,
(S)4 duu? =0o0n(0,00) x 09,
UP(O? ) = U,(‘)n Z Oa

1

» Compactness of the mapping
(g, wo) € LY(Q7) x LX(Q) — w € L}(QT) where

Orw — dAw = g on Qr, w(0,-) = wy, dyw = 0 on 9N.

so that u” — u; in LY(Q7) and a.e. as n — +oo

» Proof involves L!-type estimates of the heat operator like

/ d,-|Vu;’|2Sk[/ e+ [ 0]
[0<ur <] Qr Q



['-Theorem applies to many situations
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8tU1 — dlAul = —u1e”2
2
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['-Theorem applies to many situations

2

8tU1 — dlAul = —u1e”2
2
8tU2 - d2AU2 = u1e“2

» Easy L!(Q7)-estimate of the nonlinearity :

/ul(T)+/ ule"%:/ ul.
Q Qr Q

= Global existence of weak solutions
Existence holds for any u?, 19 € L1(Q)T 1l
» Recall that the equation

vy
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0
Ortp — Aup = €2, w(0) = uy,

does not have even local solutions in general when
0~ 11(O)+
uy € L*(2)" only.



['-Theorem applies to many situations

2

8tU1 — dlAul = —u1e”2
2
8tU2 — d2AU2 = u1e“2

» Easy L!(Q7)-estimate of the nonlinearity :

/ul(T)+/ ule"%:/ ul.
Q Qr Q

= Global existence of weak solutions
Existence holds for any u?, 19 € L1(Q)T 1l
» Recall that the equation

vy

Orup — Aup = e”g, u(0) = ud,
does not have even local solutions in general when
ud € LY(Q)* only.

» OPEN PROBLEM: are the solutions classical ?



['-approach applies to many situations

» Like to the example of finite-time blow up in L*°(Q):

Oty — dbAup = fz(Uh U2)

Oruy — diAuy = fi(uy, u2)
+bdy and initial conditions and

(M) A+£<0, and also: IN#1,f; + )\ <0,
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» Like to the example of finite-time blow up in L*°(Q):

Oty — dbAup = f2(“17 Uz)

Oruy — diAuy = fi(uy, u2)
+bdy and initial conditions and

(M) i+ £ <0, andalso: IN#1f+ A <0,
» Or(u1 + ) — A(dhur + down) — (A (u) + H(u)) = 0.
» With 0,u1 =0 = 9,up on 99, we deduce:

JoO0:(ui 4+ w2) + 0 + [ —(A(u)+ f(u)) = 0.
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» Like to the example of finite-time blow up in L*°(Q):

Oty — dbAup = f2(“17 Uz)

Oruy — diAuy = fi(uy, u2)
+bdy and initial conditions and

(M) i+ £ <0, andalso: IN#1f+ A <0,

» 0i(ur + wp) — A(diuy + daup) — (A (u) + f2(u)) = 0.

» With 0,u1 =0=09,up on 89 we deduce:
fﬂat(u1+u2)+0+fQ (u) + f(u)) = 0.

> — fQ u1 + wp)( +fQT\f1 u)+ f(u ‘:fQ(U?JF“g)-



['-approach applies to many situations

» Like to the example of finite-time blow up in L*°(Q):

Oty — dbAup = f2(“17 Uz)

Oruy — diAuy = fi(uy, u2)
+bdy and initial conditions and

(M) i+ £ <0, andalso: IN#1f+ A <0,

» 0i(ur + wp) — A(diuy + daup) — (A (u) + f2(u)) = 0.

» With 0,u1 =0=09,up on 89 we deduce:
fﬂat(u1+u2)+0+fQ (u) + f(u)) = 0.

> = [o(u + w)( +]QT\f1 u) + f(u)] = [o(u] + ud).

> Jo, 1(u) + R(u)l < Cl= C(lufll, el )]



['-approach applies to many situations

» Like to the example of finite-time blow up in L*°(Q):

Oty — dbAup = f2(“17 Uz)

Oruy — diAuy = fi(uy, u2)
+bdy and initial conditions and

(M) i+ £ <0, andalso: IN#1f+ A <0,
8t(u1 =+ U2) — A(dlul =+ d2U2) — (fl(u) + fz(u)) =0.

» With 0,u1 =0=09,up on 89 we deduce:
fﬂat(u1+u2)+0+fQ (u) + f(u)) = 0.

= fQ u1 + wp)( +]QT\f1 u) + fr(u \:fQ U?+ug).
> o, [A(u) + ()] < Cl= C(lu?]lw, 63| )]

Similarly [, [fi(u) +Ah(u)| < C, A # L
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['-approach applies to many situations

» Like to the example of finite-time blow up in L*°(Q):

Oty — dbAup = f2(“17 Uz)

Oruy — diAuy = fi(uy, u2)
+bdy and initial conditions and

(M) i+ £ <0, andalso: IN#1f+ A <0,
> at(ul + u2) — A(dlul -+ d2U2) — (fl(u) + fz(u)) =0.
» With 0,u1 =0=09,up on 8(2 we deduce:
JoOr(ur +uw) + 0 + [ —(A(u) + f2(u)) = 0.
> = Jolun + w) T)+fQT\f1 )+f2 u)l = Jo(up + u3).
> o, [A(u) + ()] < Cl= C(lu?]lw, 63| )]
> Similarly [, [fi( )+/\fg( )< C, N£1L

> = o, (W], Jo, Ia(u)l < C.



['-Theorem applies to many situations

More generally, the same method applies if there exists an
invertible matrix @ with nonnegative entries such that

Vre[0,00)™, QF(r)<[1+ Y rib,
1<i<m
for some b e R™ f = (f,..., fm)".
In other words:
if there are m independent inequalities between the fi's (not
necessarily triangular)



Case of strictly less than m inequalities

Vi=1,..m
(’)tu,- — d,'AU,' = f,-(ul, up, ..., um)
(S) 8VU,' =0

ui(0,) = u2() > 0.

» On the other hand, what about the system (S) with only
[[(P) + strictly less than m inequalities]],
...i.e. without a priori L}(Q7)-estimates on f;(u)???
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together with diffusion, namely with p;, g; € {0} U[1, 4+00):
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Case of strictly less than m inequalities

Vi=1,...m
(’)tu,- — d,'AU,' = f,-(ul, up, ..., um)
(S) 8VU,' =0

ui(0,) = u2() > 0.

» On the other hand, what about the system (S) with only
[[(P) + strictly less than m inequalities]],

...i.e. without a priori L}(Q7)-estimates on f;(u)???

» This is the case for the evolution of the concentrations of m
chemical species U;, i = 1, ..., m undergoing reversible reaction
together with diffusion, namely with p;, g; € {0} U[1, 4+00):

+
prUi +poUs + ... + pmUm kﬁ_ qUi + @l + ...+ gmUn,

» The concentrations u;(t, x) of U; satisfy a system of type (S)
when the state laws are given by
- the mass action kinetics for the reaction,

- the (linear) Fick's law for the diffusion.



Evolution models for reversible chemistry

» Principle of mass action kinetics: the rate of a reaction is

proportional to the concentration of the reactants
[P.Waage, C.M.Guldberg,1864].
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» U — U with uj(t) = concentration of U;
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Evolution models for reversible chemistry

» Principle of mass action kinetics: the rate of a reaction is

proportional to the concentration of the reactants
[P.Waage, C.M.Guldberg,1864].

» U — U with uj(t) = concentration of U;
ui(t) = —uh(t) = —k uy(t) for some k > 0.
> Ui+ ple = g3l

uy(t) = py tup(t) = —q3 ' us(t) = —kurud”.

+
> U+ p2U- k:_ q3U3
up = pytuh = —qztuy = —ktuu? + ko ud
+
> U+ p2U- k:_ QU+ q3Us3

/ -1,/ -1 —
up =(p2— q2) U= —qz Uy = —kTuub? + kT ud.
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Oruj + V - (u; Vi) where V; =velocity of the U;-particules.
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Kt
» pUr +palz+ ... + pnUn = g Ui + qaUs + ... + g Un,.
ul = (qi — p,-)[k+Hufj — k= Hufj], i=1,..,m.
J J

» When u; = uj(t,x), ui(t) is to be replaced by

Oruj + V - (u; Vi) where V; =velocity of the U;-particules.
» Fick’'s law for the diffusion says :
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Evolution models for reversible chemistry

Kt
» pUr +palz+ ... + pnUn = g Ui + qaUs + ... + g Un,.
ul = (qi — p,-)[k+Hufj — k= Hufj], i=1,..,m.
J J

» When u; = uj(t,x), ui(t) is to be replaced by

Oruj + V - (u; Vi) where V; =velocity of the U;-particules.
» Fick’'s law for the diffusion says :

uiV; = —diVu;, d;i € (0,+00).

» Whence the global system for u = (uj)i<i<m :

Vi=1,..,m,
Oruj — diAu; = (q; — pi)h(u),
h(u) = k*T1; ufj — k~1I; uj’j.

» And we may add: d,u; = 0 on 0% for all /.



Evolution model for the reversible chemistry

Vi=1,.
(5) a1.“”1 - d AUI - f/( ) = (qi__ p,-)h(u),
h(u) = kMl — k~Nju?,

Oyu; =0, u,(O N =

» The nonlinearity f = (f;) is quasipositive.



Evolution model for the reversible chemistry

Vi=1,...m
(S) Oruj — diAu; = fi(u) == (q; — pi)h(u),
h(u) = kMl — k~Nju?,

Oyu; =0, u,(O N =

» The nonlinearity f = (f;) is quasipositive.
» There are (only ) m — 1 independent (in)equalities:

(g —p)fi+(pi—qi)fi=0, i€l jel
I'={i=1,..m q—pi <0}, J:={j=1,...m; q—p; > 0}.
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(S) Oruj — diAu; = fi(u) == (q; — pi)h(u),
h(u) = kMl — k~Nju?,

Oyui =0, u,(O N =
» The nonlinearity f = (f;) is quasipositive.
» There are (only ) m — 1 independent (in)equalities:
(g —p)fi+(pi—ai)fi=0, iel jel
I'={i=1,..m q—pi <0}, J:={j=1,...m; q—p; > 0}.

» There is an entropy inequality: if kT =1 =k~

{ .i(log ui)fi(u) = h(u) > ;(log ui)(ai — pi)
= h(u)[log NM;ju — log M;u?] <0,

= 8t/ ui(log ui — 1) < 0 (entropy decrease).
Q
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Vi=1,.
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h(u) —k+r|u — k™ ﬂu
dyui =0, u,(O )= Iogu € LY(Q).

> Let u“ be the solution of :uf — diAuf = fi(u)/[1+ €3, [fi(u)]].
» THEOREM [J. Fischer, 2014] The approximate solution u¢
converges (up to a subsequence) on Q to some u with

ui € L>=(0, T; LY(Q)), Vu; € L*(0, T; HY(Q)), VT >0,

such that for all £ : [0,00)™ — R compactly supported

e (u Zag )Oru; = Zag )diAu; + fiu)],

in a weak sense against test-functions.

Solutions "a la Di Perna-Lions”. Note 0;¢(u)fi(u) € L |

Strong use of the entropy dissipation in the proof.

OPEN PROBLEM: What about classical solutions 777
Even: what about weak solutions ?? < fi(u) € L}(Q7) 777
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A surprising L-estimate for the systems (P)+(M’)
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» [2-Theorem. Assume (P)+(M’). Then, the following a
priori estimate holds for the solutions of (S):

. m 3 m 2
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A surprising L-estimate for the systems (P)+(M’)

Vi=1..,m
() O.ui — didu; = fi(ur, ua, ..., Um) in Qr
o,u; =0 onXr

u(0,1) = up(-) > 0.

» [2-Theorem. Assume (P)+(M’). Then, the following a
priori estimate holds for the solutions of (S):

. m 3 m 2
W>o,/ < Q(Zu?> , C=C(T,(d)).

i=1

» The proof uses only the sum of the equations

at(z u;) — A(Z diuj) < 0.
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>
81- <Z U,') —A (Z d,-u,-) S 0
> > g
i aiuj
W — A(aW) <0, W:Zu;, =S
>

<maxd,fd<+oo



|dea of the proof of the L?-estimate

e <Z u,-> ~A (Z d,-u,-) <0.

>
cdiu;
W — A(aW) <0, W:Zu;, a:%iu;
g d
0<g:mind,<afz’. i < maxd; =d < +00
i Zl-u,- i

» The operator W — 0, W — A(aW) is not of divergence form
and a is not continuous, but bounded from above and from
below so that the operator is parabolic and this implies

IWll2en < ClWollzo)-



|dea of the proof of the L?-estimate

e (Z u,-> ~A (Z d,-u,-) <0.

>
cdiu;
W — A(aW) <0, W:Zu;, a:%iu;
g d
O<g:mind,<afz’. i < maxd; =d < +00
i Zl-u,- i

» The operator W — 0, W — A(aW) is not of divergence form
and a is not continuous, but bounded from above and from
below so that the operator is parabolic and this implies

W2y < ClIWoll12()-

> Seen on the dual operator ¢ — — (0:¢) + aAy)) which
satisfies L2-maximal regularity in terms of d, d.
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A proof of the [2-estimate by duality

» We multiply the inequality 9:W — A(a W) < 0, by the
solution ¢ > 0 of the dual problem

{ —(0p + aly) = © € CGgo(Qr)™,
W(T) =0, ) =0,

> = o WO = [o Wou(0) < [[Wollp2e)l[¥(0) | 120
> And [[4(0)] 120y < C(d. d. T)[©]],2(q,), whence the
L%-estimate on W by duality.
» Indeed multiplying the equation in ¢ by —A1 gives
jo (AY)Orp + a(Arp)? = —jQ Ay ©.
> Jo, (A = — [ VYOV = =5 [, 9:|VY[ =3 [o[VY(0)]* > 0.
> = d||AY[I2 g,y < 1A% 1Olle@n)-



A proof of the [2-estimate by duality

| 2

v

We multiply the inequality ;W — A(a W) < 0, by the
solution ¢ > 0 of the dual problem

{ —(0p + aly) = © € CGgo(Qr)™,
W(T) =0, ) =0,

= Jor WO = Jq Wouh(0) < [[Wolli2a)[[¥(0) | 12(0)

And H@ZJ(O)HLQ(Q) < C(d,d, T)||@||L2(QT), whence the
L%-estimate on W by duality.

Indeed multiplying the equation in ¢ by —A1 gives

jO (AY)Ortp + a(Aep)? = —jQ Ay ©.

Joy (B0)o = — [, V40T = =} [, BlVU = 1 [, [V6(0)P > 0.
= d[[AY[I72o,) < 1A% 21Oz (er)-

This implies an L2(Q7—)-estimate on A1, then on 9:1) and then the
L[?(Q)-estimate on 1(0).
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Extensions of the [2-estimate for such systems

» This L?-estimate is robust !
» Variable coefficients d; = d;(t, x),
nonlinear diffusions —Ad;(u;)

> Wy € L1(Q) only !: The L2-estimate may be localized for
oW — A(aW) <0, d <a<d.

C(d,d, T
Wiy < S G D ol sy

» [J.A. Cafiizo, L. Desvillettes, K. Fellner]: there exists ¢(N) > 0
such that
H WHL2+6(07—) < CH W0HL2+E(Q)~
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Applications to quadratic systems

Vi=1,..m
(S) O,u; — diAu; = fi(u1, Uz, ooy Um) in Qr
o,ui =0 onXr

ui(0,) = up () > 0,u° € L2(Q)™.
» Corollary of the ! and L?> Theorems. Assume (P)+(M’) and
the f; are at most quaderatic, i.e.
Vi<i<m, Vrel0,00) [fi(r)]<Cl1+> .
Then, (S) has a global weak solution.

» Proof . By L2-estimate + at most quadratic growth of f;, we have
the a priori estimate for the solutions of (S)

Vi<i<m, / If(u) < C(T),
Qr

Then, we apply the L'-theorem.

» But quite more has recently be proved !
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Vi=1,..,m
(Sx0) O,uj — di Auj = fi(uy, uz, ..., Um) in Qoo,
i Oyui =0 onY .,

ui(0,-) = u?(:) € L=(Q)".
» Assume f satisfies (P)+(M’) and Vi=1,...m

(D] < KL+ 1D rlP), V= (n, e, rm) € [0, 400)™.

» Then if € is small enough, there exists a global classical
solution to S..

» To be compared with the blow up examples...: € being given,
one can construct solutions which blow up in L*°(Q) in finite
time, but the dimension has to be chosen large enough.

(e = €(N) above).

» Includes the famous Lotka-Volterra system in any dimension !.

kT

» Includes : U; + Us kﬁ_ U+ Us
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A recent main result for systems with quadratic growth

Vi=1,..,m
(S) O,uj — di Auj = fi(uy, uz, ..., Um) in Qoo,
> Oyui =0 on ¥ oo,

ui(0,) = u?(:) > 0.

P> The above quadratic result is due to K.Fellner, J. Morgan and
B. Q. Tang (in 2 papers 2020 and 2021).

P It relies in particular on a technique developed by Ya.l. Kanel
(1990) where such a global existence result was proved in RN
and for equality in (M).

» And similar global existence results were also obtained in 2018
by Ph. Souplet and in 2019 by M.C. Caputo, Th. Goudon and
A. Vasseur assuming an entropy dissipation (as for reversible
chemistry)).
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Ingredients of the proof of the quadratic theorem

» A surprising interpolation lemma whose idea is taken from Ya.
Kanel in RN and adapted by K. Fellner, J. Morgan and B.Q. Tang
to the case of a bounded regular domain with homogeneous
Neumann boundary conditions (it would also work with Dirichlet
boundary conditions)

» Let w be the solution of the heat equation

8tW — dAW — e in QT7
Oyw=0o0onXr, w(0)=wp,
© € L*(Q7), d € (0,+00).

> Assume that for some H € (0,400),v € [0,1)
|W(t7X) - W(t_)/)| < H|X _yl’ya vVt € (Ov T)a X,y € Q.

» Then there exists B, C € (0, +0c0) such that, for all t € [0, T]

(y-Lemma) [[Vw(t)[| o @n < C[[Vwpl[peo @y + BH=

QT

1 1
> =0 [Vw(t)ll@n < ClIVwolli@n + BH? (|8 [, H = 2||w[1o
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Ideas of the proof of the quadratic theorem: case

2. filu) =0

» We apply this y-lemma to V := fot > diuj
» Rewrite 0; Y ; uj — A(D_; djuj) = 0 in several ways:

>
(Vi) D ui(t)-Av=>"uf.
> ! !
(V2) 0:V—AV =) (d—Lui+>_uf.
>

1 0
(Vs) —0:V AV = Zu,-,

where a = Z"d"l_”', d<a<d.
2 uj




Ideas of the proof of the quadratic theorem: case

> i filu) =0

(Vi) S, ui(t)-AvV =3, .
(Vo) 0V —AV=3(d — Dui+ 3, uf.
(Vs) 10.V—AV =3 4.



Ideas of the proof of the quadratic theorem: case

2. filu) =0

(Vi) S, ui(t)-AvV =3, .
(Vo) 0V —AV=3(d — Dui+ 3, uf.
(Vs) 10.V—AV =3 4.

> By (V1), if we bound [|AV/|| e (g,.) = global existence !



Ideas of the proof of the quadratic theorem: case

2. filu) =0

(Vi) S, ui(t)-AvV =3, .
(Vo) 0V —AV=3(d — Dui+ 3, uf.
(Vs) 10.V—AV =3 4.

> By (V1), if we bound [|AV/|| e (g,.) = global existence !

> By applying the Krylov-Safanov estimates to (V3), we obtain
a uniform Holder-estimate for V on Q7+ (depending on d, d).



Ideas of the proof of the quadratic theorem: case

2. filu) =0

(Vi) S, ui(t)-AvV =3, .
(V2) 0V —AV =3 (di — Lui + 3, uf.
(Vs) 10.V—AV =3 4.
> By (V1), if we bound [|AV/|| e (g,.) = global existence !

> By applying the Krylov-Safanov estimates to (V3), we obtain
a uniform Holder-estimate for V on Q7+ (depending on d, d).

» Apply the y-lemma to V in (V2) !



Ideas of the proof of the quadratic theorem: case

2. filu) =0

(Vi) S, ui(t)-AvV =3, .
(V2) 0V —AV =3 (di — Lui + 3, uf.
(Vs) 10.V—AV =3 4.
> By (V1), if we bound [|AV/|| e (g,.) = global existence !

> By applying the Krylov-Safanov estimates to (V3), we obtain
a uniform Holder-estimate for V on Q7+ (depending on d, d).

» Apply the y-lemma to V in (V2) !
» + some other more classical interpolation lemma for (V2) and
for the equations in u;
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Ideas of the proof of the quadratic theorem: case

2. filu) =0

(Vi) S, ui(t)-AvV =3, .
(V2) 0V —AV =3 (di — Lui + 3, uf.
(Vs) 10.V—AV =3 4.
> By (V1), if we bound [|AV/|| e (g,.) = global existence !

> By applying the Krylov-Safanov estimates to (V3), we obtain
a uniform Holder-estimate for V on Q7+ (depending on d, d).

» Apply the y-lemma to V in (V2) !

+ some other more classical interpolation lemma for (V2) and
for the equations in u;

v

» -+ use the assumption of quadratic growth of the f;.

v

and it works...



Application to the Lotka-Volterra system

» Applies to the (quadratic) Lotka-Volterra system: for all
u® € L%°(Q)T™, there exists a global classical solution to the
system: Forall i=1,....,m,

Oruj — diuj = ejui+ | > pyuj | up = fi(u),

1<j<m

where ¢; € R, pjj € R + "Dissipation”.



Application to the Lotka-Volterra system

» Applies to the (quadratic) Lotka-Volterra system: for all
u® € L%°(Q)T™, there exists a global classical solution to the
system: Forall i=1,....,m,

Oruj — diuj = ejui+ | > pyuj | up = fi(u),
1<<m

where ¢; € R, pjj € R + "Dissipation”.

» "Dissipation”: we assume that, for some (a;) € (0, +00)”

V¢ € [0, 00) Z aip;&i&j <0

i,j=1

= Zaif,(u) < Za,-e,-u,- (whence (M"))



