À propos d＇existence globale dans des systèmes de réaction－diffusion

Michel Pierre

École Normale Supérieure de Rennes and
Institut de Recherche Mathématique de Rennes

Journée Équipe AnaNum
24 mai 2022

Goal of the talk

- Story about the global existence in time of solutions to reaction-diffusion (RD) systems for which:
- positivity of the solution is preserved for all time
- conservation or dissipation or at least control of the total mass

Goal of the talk

- Story about the global existence in time of solutions to reaction-diffusion (RD) systems for which:
- positivity of the solution is preserved for all time
- conservation or dissipation or at least control of the total mass
- OLD (>'80) AND RECENT RESULTS- OPEN PROBLEMS

Goal of the talk

- Story about the global existence in time of solutions to reaction-diffusion (RD) systems for which:
- positivity of the solution is preserved for all time
- conservation or dissipation or at least control of the total mass
- OLD (>'80) AND RECENT RESULTS- OPEN PROBLEMS
- Lots of such systems in applications: chemical morphogenesis ('Brusselator'), Glycolosis, Gray-Scott models, combustion, Lotka-Volterra systems, epidemiology (SIR), reversible chemical reactions,...

Goal of the talk

- Story about the global existence in time of solutions to reaction-diffusion (RD) systems for which:
- positivity of the solution is preserved for all time
- conservation or dissipation or at least control of the total mass
- OLD (>'80) AND RECENT RESULTS- OPEN PROBLEMS
- Lots of such systems in applications: chemical morphogenesis ('Brusselator'), Glycolosis, Gray-Scott models, combustion, Lotka-Volterra systems, epidemiology (SIR), reversible chemical reactions,...
- The two properties provide an a priori bound in L^{1} for all time. QUESTION: how does this help for global existence ???

Beginning of the story

- A question raised by R.H. Martin (Raleigh, North Carolina, USA) in 1980.

Beginning of the story

- A question raised by R.H. Martin (Raleigh, North Carolina, USA) in 1980.
- Does global existence of classical solutions hold for the following 2×2 reaction-diffusion system set on a good bounded domain $\Omega \subset \boldsymbol{R}^{N}$???

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2
\end{array}\right.
$$

(good boundary conditions on $\partial \Omega$,
where $d_{1}, d_{2} \in(0,+\infty), \beta \in[1,+\infty)$ and $u_{i}=u_{i}(t, x), t \in[0, T], x \in \Omega, i=1,2, T=+\infty ? ? ?$.

Beginning of the story

- A question raised by R.H. Martin (Raleigh, North Carolina, USA) in 1980.
- Does global existence of classical solutions hold for the following 2×2 reaction-diffusion system set on a good bounded domain $\Omega \subset \boldsymbol{R}^{N}$???

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\text { good boundary conditions on } \partial \Omega
\end{array}\right.
$$

where $d_{1}, d_{2} \in(0,+\infty), \beta \in[1,+\infty)$ and $u_{i}=u_{i}(t, x), t \in[0, T], x \in \Omega, i=1,2, T=+\infty$???.

- Let us choose homogeneous Neumann boundary conditions.

Quid of global existence ???

- $d_{1}, d_{2} \in(0,+\infty), \beta \in[1,+\infty)$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

Quid of global existence ???

- $d_{1}, d_{2} \in(0,+\infty), \beta \in[1,+\infty)$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

- Contains the O.D.E. case: $u_{i}=u_{i}(t)$:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=-u_{1} u_{2}^{\beta}, \\
u_{2}^{\prime}(t)=u_{1} u_{2}^{\beta} \\
u_{i}(0)=u_{i}^{0} \in[0,+\infty) i=1,2 .
\end{array}\right.
$$

Quid of global existence ???

- $d_{1}, d_{2} \in(0,+\infty), \beta \in[1,+\infty)$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

- Contains the O.D.E. case: $u_{i}=u_{i}(t)$:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=-u_{1} u_{2}^{\beta}, \\
u_{2}^{\prime}(t)=u_{1} u_{2}^{\beta} \\
u_{i}(0)=u_{i}^{0} \in[0,+\infty) i=1,2 .
\end{array}\right.
$$

- Local existence for the O.D.E. on a maximal interval $\left[0, T^{*}\right)$ by Cauchy-Lipschitz theorem, and the solution is nonnegative.

Quid of global existence ???

- $d_{1}, d_{2} \in(0,+\infty), \beta \in[1,+\infty)$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

- Contains the O.D.E. case: $u_{i}=u_{i}(t)$:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=-u_{1} u_{2}^{\beta}, \\
u_{2}^{\prime}(t)=u_{1} u_{2}^{\beta} \\
u_{i}(0)=u_{i}^{0} \in[0,+\infty) i=1,2 .
\end{array}\right.
$$

- Local existence for the O.D.E. on a maximal interval $\left[0, T^{*}\right)$ by Cauchy-Lipschitz theorem, and the solution is nonnegative.
- $\left(u_{1}+u_{2}\right)^{\prime}(t)=0 \Rightarrow\left(u_{1}+u_{2}\right)(t)=u_{1}^{0}+u_{2}^{0}, \forall t \in\left[0, T^{*}\right)$

Quid of global existence ???

- $d_{1}, d_{2} \in(0,+\infty), \beta \in[1,+\infty)$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

- Contains the O.D.E. case: $u_{i}=u_{i}(t)$:

$$
\left\{\begin{array}{l}
u_{1}^{\prime}(t)=-u_{1} u_{2}^{\beta}, \\
u_{2}^{\prime}(t)=u_{1} u_{2}^{\beta} \\
u_{i}(0)=u_{i}^{0} \in[0,+\infty) i=1,2
\end{array}\right.
$$

- Local existence for the O.D.E. on a maximal interval $\left[0, T^{*}\right)$ by Cauchy-Lipschitz theorem, and the solution is nonnegative.
- $\left(u_{1}+u_{2}\right)^{\prime}(t)=0 \Rightarrow\left(u_{1}+u_{2}\right)(t)=u_{1}^{0}+u_{2}^{0}, \forall t \in\left[0, T^{*}\right)$
$\Rightarrow \Rightarrow T^{*}=+\infty$!

Quid of global existence ???

- What about the full P.D.E. case?

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

Quid of global existence ？？？

－What about the full P．D．E．case？

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

－Local existence of classical solutions holds for $u_{i}^{0} \in L^{\infty}(\Omega), i=1,2$ on a maximal interval $\left[0, T^{*}\right)$ by Cauchy－Lipschitz type theorem［［fixed point theorem in $\left.\left.L^{\infty}((0, T) \times \Omega)\right]\right]$ and the solution is nonnegative as well．

Quid of global existence ???

- What about the full P.D.E. case?

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

- Local existence of classical solutions holds for $u_{i}^{0} \in L^{\infty}(\Omega), i=1,2$ on a maximal interval $\left[0, T^{*}\right)$ by Cauchy-Lipschitz type theorem [[fixed point theorem in $\left.\left.L^{\infty}((0, T) \times \Omega)\right]\right]$ and the solution is nonnegative as well.
- Moreover $T^{*}=+\infty$ if the $L^{\infty}(\Omega)$-norm of $u_{i}(t)$ is bounded on $\left[0, T^{*}\right)$.

Quid of global existence ???

- What about the full P.D.E. case?

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

- Local existence of classical solutions holds for $u_{i}^{0} \in L^{\infty}(\Omega), i=1,2$ on a maximal interval $\left[0, T^{*}\right)$ by Cauchy-Lipschitz type theorem [[fixed point theorem in $\left.\left.L^{\infty}((0, T) \times \Omega)\right]\right]$ and the solution is nonnegative as well.
- Moreover $T^{*}=+\infty$ if the $L^{\infty}(\Omega)$-norm of $u_{i}(t)$ is bounded on $\left[0, T^{*}\right)$.
- If $d_{1}=d_{2}=d, \partial_{t}\left(u_{1}+u_{2}\right)-d \Delta\left(u_{1}+u_{2}\right)=0$

$$
\begin{aligned}
& \Rightarrow\left\|\left(u_{1}+u_{2}\right)(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}+u_{2}^{0}\right\|_{L^{\infty}(\Omega)}, \forall t \in\left[0, T^{*}\right) \\
& \Rightarrow T^{*}=+\infty!
\end{aligned}
$$

Quid of global existence ???

- What about the full P.D.E. case?

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0} \geq 0, i=1,2 \\
\partial_{\nu} u_{i}=0, i=1,2 \text { on } \partial \Omega
\end{array}\right.
$$

- Local existence of classical solutions holds for $u_{i}^{0} \in L^{\infty}(\Omega), i=1,2$ on a maximal interval $\left[0, T^{*}\right)$ by Cauchy-Lipschitz type theorem [[fixed point theorem in $\left.\left.L^{\infty}((0, T) \times \Omega)\right]\right]$ and the solution is nonnegative as well.
- Moreover $T^{*}=+\infty$ if the $L^{\infty}(\Omega)$-norm of $u_{i}(t)$ is bounded on $\left[0, T^{*}\right)$.
- If $d_{1}=d_{2}=d, \partial_{t}\left(u_{1}+u_{2}\right)-d \Delta\left(u_{1}+u_{2}\right)=0$

$$
\begin{aligned}
& \Rightarrow\left\|\left(u_{1}+u_{2}\right)(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}+u_{2}^{0}\right\|_{L^{\infty}(\Omega)}, \forall t \in\left[0, T^{*}\right) \\
& \Rightarrow T^{*}=+\infty!
\end{aligned}
$$

- What happens when $d_{1} \neq d_{2}$???.

Quid of global existence ? An $L^{1}(\Omega)$-estimate

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, \quad i=1,2
\end{array}\right.
$$

- Using $\int_{\Omega} \Delta u_{i}=\int_{\partial \Omega} \partial_{\nu} u_{i}=0$, we have

$$
\begin{aligned}
& \frac{d}{d t} \int_{\Omega}\left(u_{1}+u_{2}\right)(t)=\int_{\Omega} \partial_{t}\left(u_{1}+u_{2}\right)=0 \\
& \quad \Rightarrow \quad \int_{\Omega} u_{1}(t)+u_{2}(t)=\int_{\Omega} u_{1}^{o}+u_{2}^{o}
\end{aligned}
$$

Quid of global existence ? An $L^{1}(\Omega)$-estimate

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0, \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, i=1,2
\end{array}\right.
$$

- Using $\int_{\Omega} \Delta u_{i}=\int_{\partial \Omega} \partial_{\nu} u_{i}=0$, we have

$$
\begin{aligned}
& \frac{d}{d t} \int_{\Omega}\left(u_{1}+u_{2}\right)(t)=\int_{\Omega} \partial_{t}\left(u_{1}+u_{2}\right)=0 \\
& \quad \Rightarrow \quad \int_{\Omega} u_{1}(t)+u_{2}(t)=\int_{\Omega} u_{1}^{o}+u_{2}^{o}
\end{aligned}
$$

$-\Rightarrow L^{1}(\Omega)$-bound, uniform in time $\left[t \in\left[0, T^{*}\right)\right]$!

Quid of global existence ? An $L^{1}(\Omega)$-estimate

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, \quad i=1,2
\end{array}\right.
$$

- Using $\int_{\Omega} \Delta u_{i}=\int_{\partial \Omega} \partial_{\nu} u_{i}=0$, we have

$$
\begin{aligned}
& \frac{d}{d t} \int_{\Omega}\left(u_{1}+u_{2}\right)(t)=\int_{\Omega} \partial_{t}\left(u_{1}+u_{2}\right)=0 \\
& \quad \Rightarrow \quad \int_{\Omega} u_{1}(t)+u_{2}(t)=\int_{\Omega} u_{1}^{o}+u_{2}^{o}
\end{aligned}
$$

$-\Rightarrow L^{1}(\Omega)$-bound, uniform in time $\left[t \in\left[0, T^{*}\right)\right]$!

- How does this help for global existence?

Same question for the family of systems with the two main properties $(\mathbf{P})+(\mathbf{M})$ which yield the same estimates
$(S)\left\{\begin{array}{l}\forall i=1, \ldots, m \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right), \\ \partial_{\nu} u_{i}=0, \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0,\end{array}\right.$
$d_{i} \in(0,+\infty), f_{i}:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ locally Lipschitz continuous,

- (P): Positivity (nonnegativity) is preserved

Same question for the family of systems with the two main properties $(\mathbf{P})+(\mathbf{M})$ which yield the same estimates
$(S)\left\{\begin{array}{l}\forall i=1, \ldots, m \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right), \\ \partial_{\nu} u_{i}=0, \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0,\end{array}\right.$
$d_{i} \in(0,+\infty), f_{i}:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ locally Lipschitz continuous,

- (P): Positivity (nonnegativity) is preserved
- (M): $\sum_{1 \leq i \leq m} f_{i} \leq 0$

Same question for the family of systems with the two main properties $(\mathbf{P})+(\mathbf{M})$ which yield the same estimates
$(S)\left\{\begin{array}{l}\forall i=1, \ldots, m \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right), \\ \partial_{\nu} u_{i}=0, \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0,\end{array}\right.$
$d_{i} \in(0,+\infty), f_{i}:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ locally Lipschitz continuous,

- (P): Positivity (nonnegativity) is preserved
- (M): $\sum_{1 \leq i \leq m} f_{i} \leq 0$
- or more generally
(\mathbf{M}^{\prime}) $\forall r \in\left[0, \infty\left[m, \sum_{1 \leq i \leq m} a_{i} f_{i}(r) \leq C\left[1+\sum_{1 \leq i \leq m} r_{i}\right]\right.\right.$ for some $a_{i}>0$
$(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T}:=(0, T) \times \Omega, \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T}:=(0, T) \times \partial \Omega, \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}$
- (P) Preservation of Positivity: $\forall i=1, \ldots, m$
$\forall r=\left(r_{1}, \ldots, r_{m}\right) \in\left[0, \infty\left[{ }^{m}, f_{i}\left(r_{1}, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_{m}\right) \geq 0\right.\right.$, $="$ quasi-positivity " of $f=\left(f_{i}\right)_{1 \leq i \leq m}$.

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 & \end{cases}
$$

- (P) Preservation of Positivity: $\forall i=1, \ldots, m$ $\forall r \in\left[0,+\infty\left[{ }^{m}, \quad f_{i}\left(r_{1}, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_{m}\right) \geq 0\right.\right.$.
- (M): $\sum_{1 \leq i \leq m} f_{i}\left(r_{1}, \ldots, r_{m}\right) \leq 0 \Rightarrow$ 'Control of the Total Mass':

$$
\forall t \geq 0, \quad \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}(t, x) d x \leq \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}^{0}(x) d x
$$

Add up, integrate on Ω, use $\int_{\Omega} \Delta u_{i}=\int_{\partial \Omega} \partial_{\nu} u_{i}=0$:

$$
\int_{\Omega} \partial_{t}\left[\sum u_{i}(t)\right] d x=\int_{\Omega} \sum_{i} f_{i}(u) d x \leq 0 .
$$

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 & \end{cases}
$$

- (P) Preservation of Positivity: $\forall i=1, \ldots, m$ $\forall r \in\left[0,+\infty\left[{ }^{m}, \quad f_{i}\left(r_{1}, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_{m}\right) \geq 0\right.\right.$.
- (M): $\sum_{1 \leq i \leq m} f_{i}\left(r_{1}, \ldots, r_{m}\right) \leq 0 \Rightarrow$ 'Control of the Total Mass':

$$
\forall t \geq 0, \quad \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}(t, x) d x \leq \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}^{0}(x) d x
$$

Add up, integrate on Ω, use $\int_{\Omega} \Delta u_{i}=\int_{\partial \Omega} \partial_{\nu} u_{i}=0$:

$$
\int_{\Omega} \partial_{t}\left[\sum u_{i}(t)\right] d x=\int_{\Omega} \sum_{i} f_{i}(u) d x \leq 0 .
$$

- $\Rightarrow L^{1}(\Omega)$ - a priori estimates, uniform in time.

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- (P) Preservation of Positivity: $\forall i=1, \ldots, m$ $\forall r \in\left[0,+\infty\left[{ }^{m}, \quad f_{i}\left(r_{1}, \ldots, r_{i-1}, 0, r_{i+1}, \ldots, r_{m}\right) \geq 0\right.\right.$.
- (M): $\sum_{1 \leq i \leq m} f_{i}\left(r_{1}, \ldots, r_{m}\right) \leq 0 \Rightarrow$ 'Control of the Total Mass':

$$
\forall t \geq 0, \quad \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}(t, x) d x \leq \int_{\Omega} \sum_{1 \leq i \leq r} u_{i}^{0}(x) d x
$$

Add up, integrate on Ω, use $\int_{\Omega} \Delta u_{i}=\int_{\partial \Omega} \partial_{\nu} u_{i}=0$:

$$
\int_{\Omega} \partial_{t}\left[\sum u_{i}(t)\right] d x=\int_{\Omega} \sum_{i} f_{i}(u) d x \leq 0 .
$$

- $\Rightarrow L^{1}(\Omega)$ - a priori estimates, uniform in time.
- Remark: L^{1}-bound for all time with (\mathbf{M}^{\prime})

QUESTION:

What about Global Existence of solutions
under assumption $(\mathrm{P})+(\mathrm{M})$?? or more generally $(\mathrm{P})+\left(\mathrm{M}^{\prime}\right)$??

Several approaches and techniques

－L^{∞}－approach：local existence
－An L^{p}－approach
－Blow up may occur．．．
－An L^{1}－approach
－L Log L may also be involved
－A surprising L^{2}－estimate
－And more about quadratic systems
－．．．based on various properties of the Heat Operator and of diffusion operators with（only）bounded coefficients
－＋OPEN PROBLEMS

Local existence in L^{∞} for systems

$$
(S)\left\{\begin{array}{ll}
\forall i=1, \ldots, m & \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\
\partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\
u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . &
\end{array}:\right.
$$

- Theorem (à la Cauchy-Lipschitz dans L^{∞}).

Let $u^{0}=\left(u_{i}^{0}\right)_{1 \leq i \leq m} \in L^{\infty}(\Omega)^{+m}$. Then, there exist a maximum time $T^{*}>0$ and $u=\left(u_{1}, \ldots, u_{m}\right)$ unique classical nonnegative solution of (S) on $\left[0, T^{*}\right)$. Moreover,

$$
\sup _{t \in\left[0, T^{*}\right)}\left\{\max _{i}\left\|u_{i}(t)\right\|_{L^{\infty}(\Omega)}\right\}<+\infty \Rightarrow\left[T^{*}+\infty\right]
$$

Local existence in L^{∞} for systems

$$
(S)\left\{\begin{array}{ll}
\forall i=1, \ldots, m & \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\
\partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\
u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . &
\end{array}:\right.
$$

- Theorem (à la Cauchy-Lipschitz dans L^{∞}).

Let $u^{0}=\left(u_{i}^{0}\right)_{1 \leq i \leq m} \in L^{\infty}(\Omega)^{+m}$. Then, there exist a maximum time $T^{*}>0$ and $u=\left(u_{1}, \ldots, u_{m}\right)$ unique classical nonnegative solution of (S) on $\left[0, T^{*}\right)$. Moreover,

$$
\sup _{t \in\left[0, T^{*}\right)}\left\{\max _{i}\left\|u_{i}(t)\right\|_{L^{\infty}(\Omega)}\right\}<+\infty \Rightarrow\left[T^{*}+\infty\right] .
$$

- Corollary. If $d_{i}=d$ for all $i=1, \ldots, m$, then $T^{*}=+\infty$.

Local existence in L^{∞} for systems

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- Theorem (à la Cauchy-Lipschitz dans L^{∞}).

Let $u^{0}=\left(u_{i}^{0}\right)_{1 \leq i \leq m} \in L^{\infty}(\Omega)^{+m}$. Then, there exist a maximum time $T^{*}>0$ and $u=\left(u_{1}, \ldots, u_{m}\right)$ unique classical nonnegative solution of (S) on $\left[0, T^{*}\right)$. Moreover,

$$
\sup _{t \in\left[0, T^{*}\right)}\left\{\max _{i}\left\|u_{i}(t)\right\|_{L^{\infty}(\Omega)}\right\}<+\infty \Rightarrow\left[T^{*}+\infty\right] .
$$

- Corollary. If $d_{i}=d$ for all $i=1, \ldots, m$, then $T^{*}=+\infty$.
- Proof: $\partial_{t}\left(\sum_{i} u_{i}\right)-d \Delta\left(\sum_{i} u_{i}\right) \leq 0$.

$$
\Rightarrow\left\|\sum_{i} u_{i}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|\sum_{i} u_{i 0}\right\|_{L^{\infty}(\Omega)}
$$

The L^{p}-approach

- Recall the R.H. Martin's problem $(\beta \in[1,+\infty))$

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \quad(\leq 0) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, i=1,2 .
\end{array}\right.
$$

The L^{p}-approach

- Recall the R.H. Martin's problem $(\beta \in[1,+\infty))$

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \quad(\leq 0) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, i=1,2 .
\end{array}\right.
$$

- By maximum principle $\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}\right\|_{L^{\infty}(\Omega)}$.

The L^{p}-approach

- Recall the R.H. Martin's problem $(\beta \in[1,+\infty))$

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \quad(\leq 0) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, i=1,2 .
\end{array}\right.
$$

- By maximum principle $\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}\right\|_{L^{\infty}(\Omega)}$.
- We have : $\partial_{t} u_{2}-d_{2} \Delta u_{2}=-\left(\partial_{t} u_{1}-d_{1} \Delta u_{1}\right)$.

The L^{p}-approach

- Recall the R.H. Martin's problem $(\beta \in[1,+\infty))$

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \quad(\leq 0) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, i=1,2 .
\end{array}\right.
$$

- By maximum principle $\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}\right\|_{L^{\infty}(\Omega)}$.
- We have : $\partial_{t} u_{2}-d_{2} \Delta u_{2}=-\left(\partial_{t} u_{1}-d_{1} \Delta u_{1}\right)$.
- Or: " $u_{2}=\left(\partial_{t}-d_{2} \Delta\right)^{-1}\left(-\partial_{t}+d_{1} \Delta\right) u_{1} "\left[=: \mathcal{A} u_{1}\right]$

The L^{p}-approach

- Recall the R.H. Martin's problem $(\beta \in[1,+\infty))$

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \quad(\leq 0) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, i=1,2 .
\end{array}\right.
$$

- By maximum principle $\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}\right\|_{L^{\infty}(\Omega)}$.
- We have : $\partial_{t} u_{2}-d_{2} \Delta u_{2}=-\left(\partial_{t} u_{1}-d_{1} \Delta u_{1}\right)$.
- Or: " $u_{2}=\left(\partial_{t}-d_{2} \Delta\right)^{-1}\left(-\partial_{t}+d_{1} \Delta\right) u_{1} "\left[=: \mathcal{A} u_{1}\right]$
- L^{p}-Main Lemma: the operator \mathcal{A} is continuous from $L^{P}\left(Q_{T}\right)$ into itself for all $p \in(1,+\infty)$ and all $T>0$.

$$
\Rightarrow\left\|u_{2}\right\|_{L^{p}\left(Q_{T^{*}}\right)}<+\infty, \forall p<+\infty .
$$

The L^{p}-approach

- Recall the R.H. Martin's problem $(\beta \in[1,+\infty))$

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \quad(\leq 0) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, i=1,2 .
\end{array}\right.
$$

- By maximum principle $\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}\right\|_{L^{\infty}(\Omega)}$.
- We have : $\partial_{t} u_{2}-d_{2} \Delta u_{2}=-\left(\partial_{t} u_{1}-d_{1} \Delta u_{1}\right)$.
- Or: " $u_{2}=\left(\partial_{t}-d_{2} \Delta\right)^{-1}\left(-\partial_{t}+d_{1} \Delta\right) u_{1} "\left[=: \mathcal{A} u_{1}\right]$
- L^{p}-Main Lemma: the operator \mathcal{A} is continuous from $L^{P}\left(Q_{T}\right)$ into itself for all $p \in(1,+\infty)$ and all $T>0$.

$$
\Rightarrow\left\|u_{2}\right\|_{L^{p}\left(Q_{T^{*}}\right)}<+\infty, \forall p<+\infty .
$$

$>\Rightarrow\left\|u_{1} u_{2}^{\beta}\right\|_{L^{q}\left(Q_{T^{*}}\right)}<+\infty, \forall q<+\infty$,

The L^{p}-approach

- Recall the R.H. Martin's problem $(\beta \in[1,+\infty))$

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \quad(\leq 0) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, i=1,2 .
\end{array}\right.
$$

- By maximum principle $\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}\right\|_{L^{\infty}(\Omega)}$.
- We have : $\partial_{t} u_{2}-d_{2} \Delta u_{2}=-\left(\partial_{t} u_{1}-d_{1} \Delta u_{1}\right)$.
- Or: " $u_{2}=\left(\partial_{t}-d_{2} \Delta\right)^{-1}\left(-\partial_{t}+d_{1} \Delta\right) u_{1} "\left[=: \mathcal{A} u_{1}\right]$
- L^{p}-Main Lemma: the operator \mathcal{A} is continuous from $L^{p}\left(Q_{T}\right)$ into itself for all $p \in(1,+\infty)$ and all $T>0$.

$$
\Rightarrow\left\|u_{2}\right\|_{L^{p}\left(Q_{T^{*}}\right)}<+\infty, \forall p<+\infty .
$$

$>\Rightarrow\left\|u_{1} u_{2}^{\beta}\right\|_{L^{q}\left(Q_{T^{*}}\right)}<+\infty, \forall q<+\infty$,

- Choose $q>(N+1) / 2$ and use the equation in u_{2} to deduce:

The L^{p}-approach

- Recall the R.H. Martin's problem $(\beta \in[1,+\infty))$

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} u_{2}^{\beta} \quad(\leq 0) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} u_{2}^{\beta} \\
\partial_{\nu} u_{i}=0 \text { on } \partial \Omega, i=1,2 .
\end{array}\right.
$$

- By maximum principle $\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)} \leq\left\|u_{1}^{0}\right\|_{L^{\infty}(\Omega)}$.
- We have : $\partial_{t} u_{2}-d_{2} \Delta u_{2}=-\left(\partial_{t} u_{1}-d_{1} \Delta u_{1}\right)$.
- Or: " $u_{2}=\left(\partial_{t}-d_{2} \Delta\right)^{-1}\left(-\partial_{t}+d_{1} \Delta\right) u_{1} "\left[=: \mathcal{A} u_{1}\right]$
- L^{p}-Main Lemma: the operator \mathcal{A} is continuous from $L^{P}\left(Q_{T}\right)$ into itself for all $p \in(1,+\infty)$ and all $T>0$.

$$
\Rightarrow\left\|u_{2}\right\|_{L^{p}\left(Q_{T^{*}}\right)}<+\infty, \forall p<+\infty .
$$

$>\Rightarrow\left\|u_{1} u_{2}^{\beta}\right\|_{L^{q}\left(Q_{T^{*}}\right)}<+\infty, \forall q<+\infty$,

- Choose $q>(N+1) / 2$ and use the equation in u_{2} to deduce:
$\Rightarrow \Rightarrow\left\|u_{2}\right\|_{L^{\infty}\left(Q_{T^{*}}\right)}<+\infty$ and $T^{*}=+\infty$!

The L^{p}－Main Lemma is a dual statement of the maximal $L^{p^{\prime}}$－regularity
－More generally，［S．Hollis，M．P．，R．H．Martin＇87］

$$
\partial_{t} u_{2}-d_{2} \Delta u_{2} \leq a \partial_{t} u_{1}+b \Delta u_{1}, \quad u_{2} \geq 0+B . C ., a, b \in \boldsymbol{R},
$$

implies the existence of $C=C\left(p, T, \Omega, u_{i}^{0}, a, b\right)$ such that：

$$
\forall p \in(1, \infty),\left\|u_{2}\right\|_{L^{\rho}\left(Q_{T}\right)} \leq C\left[1+\left\|u_{1}\right\|_{L^{\rho}\left(Q_{T}\right)}\right] .
$$

The L^{p}-Main Lemma is a dual statement of the maximal $L^{p^{\prime}}$-regularity

- More generally, [S. Hollis, M.P., R.H. Martin '87]

$$
\partial_{t} u_{2}-d_{2} \Delta u_{2} \leq a \partial_{t} u_{1}+b \Delta u_{1}, \quad u_{2} \geq 0+B . C ., a, b \in \boldsymbol{R},
$$

implies the existence of $C=C\left(p, T, \Omega, u_{i}^{0}, a, b\right)$ such that:

$$
\forall p \in(1, \infty),\left\|u_{2}\right\|_{L^{\rho}\left(Q_{T}\right)} \leq C\left[1+\left\|u_{1}\right\|_{L^{p}\left(Q_{T}\right)}\right] .
$$

- Solve the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+d_{2} \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right), \Theta \geq 0 \\
\psi(T)=0, \quad \partial_{\nu} \psi=0 \text { on } \Sigma_{T}
\end{array}\right.
$$

The L^{p}-Main Lemma is a dual statement of the maximal $L^{p^{\prime}}$-regularity

- More generally, [s. Hollis, M.P., R.H. Martin '87]

$$
\partial_{t} u_{2}-d_{2} \Delta u_{2} \leq a \partial_{t} u_{1}+b \Delta u_{1}, \quad u_{2} \geq 0+B . C ., a, b \in \boldsymbol{R},
$$

implies the existence of $C=C\left(p, T, \Omega, u_{i}^{0}, a, b\right)$ such that:

$$
\forall p \in(1, \infty),\left\|u_{2}\right\|_{L^{\rho}\left(Q_{T}\right)} \leq C\left[1+\left\|u_{1}\right\|_{L^{\rho}\left(Q_{T}\right)}\right] .
$$

- Solve the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+d_{2} \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right), \Theta \geq 0, \\
\psi(T)=0, \partial_{\nu} \psi=0 \text { on } \Sigma_{T} .
\end{array}\right.
$$

- Multiplying the inequality in u_{2} by $\psi \geq 0$ leads to:

$$
\int_{Q_{T}} u_{2} \Theta \leq \int_{\Omega}\left(-a u_{1}^{0}+u_{2}^{0}\right) \psi(0)+a \int_{Q_{T}} u_{1} \Theta+\left(a d_{2}+b\right) \int_{Q_{T}} u_{1} \Delta \psi .
$$

The L^{p}-Main Lemma is a dual statement of the maximal $L^{p^{\prime}}$-regularity

- More generally, [s. Hollis, M.P., R.H. Martin '87]

$$
\partial_{t} u_{2}-d_{2} \Delta u_{2} \leq a \partial_{t} u_{1}+b \Delta u_{1}, \quad u_{2} \geq 0+B . C ., a, b \in \boldsymbol{R},
$$

implies the existence of $C=C\left(p, T, \Omega, u_{i}^{0}, a, b\right)$ such that:

$$
\forall p \in(1, \infty),\left\|u_{2}\right\|_{L^{\rho}\left(Q_{T}\right)} \leq C\left[1+\left\|u_{1}\right\|_{L^{\rho}\left(Q_{T}\right)}\right] .
$$

- Solve the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+d_{2} \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right), \Theta \geq 0, \\
\psi(T)=0, \quad \partial_{\nu} \psi=0 \text { on } \Sigma_{T} .
\end{array}\right.
$$

- Multiplying the inequality in u_{2} by $\psi \geq 0$ leads to:

$$
\int_{Q_{T}} u_{2} \Theta \leq \int_{\Omega}\left(-a u_{1}^{0}+u_{2}^{0}\right) \psi(0)+a \int_{Q_{T}} u_{1} \Theta+\left(a d_{2}+b\right) \int_{Q_{T}} u_{1} \Delta \psi .
$$

- By the $L^{p^{\prime}}$-maximal regularity theory for the heat operator

$$
\|\Delta \psi\|_{L^{\prime}\left(Q_{T}\right)}+\|\psi(0)\|_{L^{p^{\prime}}(\Omega)} \leq C\|\Theta\|_{L p^{\prime}\left(Q_{T}\right)} .
$$

The L^{p}-Main Lemma is a dual statement of the maximal $L^{p^{\prime}}$-regularity

- More generally, [s. Hollis, M.P., R.H. Martin '87]

$$
\partial_{t} u_{2}-d_{2} \Delta u_{2} \leq a \partial_{t} u_{1}+b \Delta u_{1}, \quad u_{2} \geq 0+B . C ., a, b \in \boldsymbol{R},
$$

implies the existence of $C=C\left(p, T, \Omega, u_{i}^{0}, a, b\right)$ such that:

$$
\forall p \in(1, \infty),\left\|u_{2}\right\|_{L^{p}\left(Q_{T}\right)} \leq C\left[1+\left\|u_{1}\right\|_{L^{p}\left(Q_{T}\right)}\right] .
$$

- Solve the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+d_{2} \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right), \Theta \geq 0, \\
\psi(T)=0, \quad \partial_{\nu} \psi=0 \text { on } \Sigma_{T} .
\end{array}\right.
$$

- Multiplying the inequality in u_{2} by $\psi \geq 0$ leads to:

$$
\int_{Q_{T}} u_{2} \Theta \leq \int_{\Omega}\left(-a u_{1}^{0}+u_{2}^{0}\right) \psi(0)+a \int_{Q_{T}} u_{1} \Theta+\left(a d_{2}+b\right) \int_{Q_{T}} u_{1} \Delta \psi .
$$

- By the $L^{p^{\prime}}$-maximal regularity theory for the heat operator

$$
\|\Delta \psi\|_{L^{\prime}\left(Q_{T}\right)}+\|\psi(0)\|_{L^{p^{\prime}}(\Omega)} \leq C\|\Theta\|_{L p^{\prime}\left(Q_{T}\right)} .
$$

$\triangleright \Rightarrow\left|\int_{Q_{T}} u_{2} \Theta\right| \leq C\left[1+\left\|u_{1}\right\|_{L^{p}\left(Q_{T}\right)}\right]\|\Theta\|_{L^{p^{\prime}}\left(Q_{T}\right)} \Rightarrow L^{p}\left(Q_{T}\right)$-estimate on u_{2} by duality.

Extensions and limits of the L^{p}－approach

$$
\begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 & \end{cases}
$$

－The same approach provides global existence for the general system when a triangular structure holds like

$$
f_{1} \leq 0, \quad f_{1}+f_{2} \leq 0, f_{1}+f_{2}+f_{3} \leq 0, \ldots
$$

in which case we have，with $Q=Q_{T^{*}}$ and for all $p \in(1, \infty)$

$$
\begin{array}{r}
\left\|u_{1}\right\|_{L^{\infty}(Q)}<\infty,\left\|u_{2}\right\|_{L^{p}(Q)} \leq C\left\|u_{1}\right\|_{L^{p}(Q)} \\
\left\|u_{3}\right\|_{L^{p}(Q)} \leq C\left[\left\|u_{1}\right\|_{L^{p}(Q)}+\left\|u_{2}\right\|_{L^{p}(Q)}\right], \ldots
\end{array}
$$

Extensions and limits of the L^{p}-approach

$$
\begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 & \end{cases}
$$

- The same approach provides global existence for the general system when a triangular structure holds like

$$
f_{1} \leq 0, \quad f_{1}+f_{2} \leq 0, f_{1}+f_{2}+f_{3} \leq 0, \ldots
$$

in which case we have, with $Q=Q_{T^{*}}$ and for all $p \in(1, \infty)$

$$
\begin{gathered}
\left\|u_{1}\right\|_{L^{\infty}(Q)}<\infty,\left\|u_{2}\right\|_{L^{p}(Q)} \leq C\left\|u_{1}\right\|_{L^{p}(Q)} \\
\left\|u_{3}\right\|_{L^{p}(Q)} \leq C\left[\left\|u_{1}\right\|_{L^{p}(Q)}+\left\|u_{2}\right\|_{L^{p}(Q)}\right], \ldots
\end{gathered}
$$

- [J. Morgan, W. Fitzgibbon, et al. '89] More generally it applies to $m \times m$ systems if there exists a triangular invertible matrix Q with nonnegative entries such that

$$
\forall r \in[0, \infty)^{m}, Q f(r) \leq\left[1+\sum_{1 \leq i \leq m} r_{i}\right] \mathrm{b}
$$

for some $\mathrm{b} \in \boldsymbol{R}^{m}, f=\left(f_{1}, \ldots, f_{m}\right)^{t}$ with at most polynomial growth

Extension with advection and anisotropic diffusion

$(S)\left\{\begin{array}{l}\partial_{t} u_{i}-\operatorname{div}\left(D_{i}(t, x) \nabla u_{i}+V_{i}(t, x) u_{i}\right)=f_{i}(t, x, u), \\ \left(D_{i}(t, x) \nabla u_{i}+V_{i}(t, x) u_{i}\right) \cdot \nu=0 \text { on } \partial \Omega, \\ u_{i}(0, \cdot)=u_{i}^{0} \geq 0, \\ D_{i}=\left[d_{i}^{l k}\right]_{1 \leq k, l \leq N} \text { symmetric elliptic, } \quad V_{i} \in R^{N} .\end{array}\right.$

- Theorem. [D. Bothe, A. Fischer, M.P., G. Rolland, '2016] Assume that $f=\left(f_{1}, \ldots, f_{m}\right)$ satisfies $\left.(\mathbf{P}), \mathbf{(M}\right)$, the triangular structure and with growth at most polynomial. Assume also that,

$$
\begin{gathered}
V_{i}, \nabla d_{i}^{l k} \in L^{\infty}\left(0, T ; L^{r}(\Omega)\right) \text { for some } r>\max \{2, N\} \\
d_{i}^{l k} \in C\left(\overline{Q_{T}}\right), \quad \forall T>0
\end{gathered}
$$

Then, there are global bounded solutions for (S).

Extension with advection and anisotropic diffusion

$(S)\left\{\begin{array}{l}\partial_{t} u_{i}-\operatorname{div}\left(D_{i}(t, x) \nabla u_{i}+V_{i}(t, x) u_{i}\right)=f_{i}(t, x, u), \\ \left(D_{i}(t, x) \nabla u_{i}+V_{i}(t, x) u_{i}\right) \cdot \nu=0 \text { on } \partial \Omega, \\ u_{i}(0, \cdot)=u_{i}^{0} \geq 0, \\ D_{i}=\left[d_{i}^{l k}\right]_{1 \leq k, I \leq N} \text { symmetric elliptic, } \quad V_{i} \in R^{N} .\end{array}\right.$

- Theorem. [D. Bothe, A. Fischer, M.P., G. Rolland, '2016] Assume that $f=\left(f_{1}, \ldots, f_{m}\right)$ satisfies $\left.(\mathbf{P}), \mathbf{(M}\right)$, the triangular structure and with growth at most polynomial. Assume also that,

$$
\begin{gathered}
V_{i}, \nabla d_{i}^{l k} \in L^{\infty}\left(0, T ; L^{r}(\Omega)\right) \text { for some } r>\max \{2, N\} \\
d_{i}^{l k} \in C\left(\overline{Q_{T}}\right), \quad \forall T>0
\end{gathered}
$$

Then, there are global bounded solutions for (S).

- The assumptions are so that $L^{p^{\prime}}$-regularity theory holds for each dual problem [H. Amann, R. Denk-M. Hieber-J. Prüss, '05]

$$
\begin{gathered}
-\left[\partial_{t} \Psi+\operatorname{div}\left(D_{i}(t, x) \nabla \Psi\right)\right]+V_{i}(t, x) \cdot \nabla \Psi=\Theta \in C_{0}^{\infty}((\tau, \tau+\delta) \\
D_{i}(\tau, x) \nabla \Psi \cdot \nu=\theta \in C^{\infty}((\tau, \tau+\delta) \times \partial \Omega)
\end{gathered}
$$

where δ is small.

Application to the case of close d_{i} 's

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- We may write for $\underline{d}:=\min _{i} d_{i}, \bar{d}:=\max _{i} d_{i}$

$$
\left\{\begin{aligned}
\partial_{t}\left(\sum_{i} u_{i}\right)-\underline{d} \Delta\left(\sum_{i} u_{i}\right) & =\sum_{i}\left(d_{i}-\underline{d}\right) \Delta u_{i}+\sum_{i} f_{i} \\
& \leq \Delta\left(\sum_{i}\left(d_{i}-\underline{d}\right) u_{i}\right) .
\end{aligned}\right.
$$

Application to the case of close d_{i} 's

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- We may write for $\underline{d}:=\min _{i} d_{i}, \bar{d}:=\max _{i} d_{i}$

$$
\left\{\begin{aligned}
\partial_{t}\left(\sum_{i} u_{i}\right)-\underline{d} \Delta\left(\sum_{i} u_{i}\right) & =\sum_{i}\left(d_{i}-\underline{d}\right) \Delta u_{i}+\sum_{i} f_{i} \\
& \leq \Delta\left(\sum_{i}\left(d_{i}-\underline{d}\right) u_{i}\right) .
\end{aligned}\right.
$$

- We deduce from the L^{p}-Main Lemma that $\forall p \in(1,+\infty)$

$$
\left\{\begin{aligned}
\left\|\sum_{i} u_{i}\right\|_{L^{p}\left(Q_{T}\right)} & \leq C\left[1+\left\|\sum_{i}\left(d_{i}-\underline{d}\right) u_{i}\right\|_{L^{p}\left(Q_{T}\right)}\right] \\
& \leq C\left[1+(\bar{d}-\underline{d})\left\|\sum_{i} u_{i}\right\|_{L^{p}\left(Q_{T}\right)}\right] .
\end{aligned}\right.
$$

Application to the case of close d_{i} 's

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- We may write for $\underline{d}:=\min _{i} d_{i}, \bar{d}:=\max _{i} d_{i}$

$$
\left\{\begin{aligned}
\partial_{t}\left(\sum_{i} u_{i}\right)-\underline{d} \Delta\left(\sum_{i} u_{i}\right) & =\sum_{i}\left(d_{i}-\underline{d}\right) \Delta u_{i}+\sum_{i} f_{i} \\
& \leq \Delta\left(\sum_{i}\left(d_{i}-\underline{d}\right) u_{i}\right) .
\end{aligned}\right.
$$

- We deduce from the L^{p}-Main Lemma that $\forall p \in(1,+\infty)$

$$
\left\{\begin{aligned}
\left\|\sum_{i} u_{i}\right\|_{L^{p}\left(Q_{T}\right)} & \leq C\left[1+\left\|\sum_{i}\left(d_{i}-\underline{d}\right) u_{i}\right\|_{L^{p}\left(Q_{T}\right)}\right] \\
& \leq C\left[1+(\bar{d}-\underline{d})\left\|\sum_{i} u_{i}\right\|_{L^{p}\left(Q_{T}\right)}\right] .
\end{aligned}\right.
$$

- If the $d_{i}^{\prime} s$ are close enough so that $C(\bar{d}-\underline{d})<1$, then

$$
\left\|\sum_{i} u_{i}\right\|_{L^{p}\left(Q_{T^{*}}\right)} \leq C[1-C(\bar{d}-\underline{d})]^{-1}<+\infty .
$$

Application to the case of close d_{i} 's

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- We may write for $\underline{d}:=\min _{i} d_{i}, \bar{d}:=\max _{i} d_{i}$

$$
\left\{\begin{aligned}
\partial_{t}\left(\sum_{i} u_{i}\right)-\underline{d} \Delta\left(\sum_{i} u_{i}\right) & =\sum_{i}\left(d_{i}-\underline{d}\right) \Delta u_{i}+\sum_{i} f_{i} \\
& \leq \Delta\left(\sum_{i}\left(d_{i}-\underline{d}\right) u_{i}\right) .
\end{aligned}\right.
$$

- We deduce from the L^{p}-Main Lemma that $\forall p \in(1,+\infty)$

$$
\left\{\begin{aligned}
\left\|\sum_{i} u_{i}\right\|_{L^{p}\left(Q_{T}\right)} & \leq C\left[1+\left\|\sum_{i}\left(d_{i}-\underline{d}\right) u_{i}\right\|_{L^{p}\left(Q_{T}\right)}\right] \\
& \leq C\left[1+(\bar{d}-\underline{d})\left\|\sum_{i} u_{i}\right\|_{L^{p}\left(Q_{T}\right)}\right] .
\end{aligned}\right.
$$

- If the $d_{i}^{\prime} s$ are close enough so that $C(\bar{d}-\underline{d})<1$, then

$$
\left\|\sum_{i} u_{i}\right\|_{L^{p}\left(Q_{T^{*}}\right)} \leq C[1-C(\bar{d}-\underline{d})]^{-1}<+\infty .
$$

- Whence global existence if, moreover, f_{i} at most polynomial !

Extensions and limits of the L^{p}-approach

- L^{p}-approach does not apply to

$$
\left\{\begin{array}{c}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} e^{u_{2}^{2}} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} e^{u_{2}^{2}}
\end{array}\right.
$$

Extensions and limits of the L^{p}-approach

- L^{p}-approach does not apply to

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} e^{u_{2}^{2}} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} e^{u_{2}^{2}}
\end{array}\right.
$$

- neither to the system

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=u_{1}^{3} u_{2}^{2}-u_{1}^{2} u_{2}^{3} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1}^{2} u_{2}^{3}-u_{1}^{3} u_{2}^{2}
\end{array}\right.
$$

Extensions and limits of the L^{p}-approach

- L^{p}-approach does not apply to

$$
\left\{\begin{array}{c}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} e^{u_{2}^{2}} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} e^{u_{2}^{2}}
\end{array}\right.
$$

- neither to the system

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=u_{1}^{3} u_{2}^{2}-u_{1}^{2} u_{2}^{3} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1}^{2} u_{2}^{3}-u_{1}^{3} u_{2}^{2}
\end{array}\right.
$$

- and even not to the " better" system with $\lambda \in(0,1)$

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=\lambda u_{1}^{3} u_{2}^{2}-u_{1}^{2} u_{2}^{3}\left[=: f_{1}(u)\right] \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1}^{2} u_{2}^{3}-u_{1}^{3} u_{2}^{2}\left[=: f_{2}(u)\right]
\end{array}\right.
$$

where : $f_{1}(u)+f_{2}(u) \leq 0$,
and also: $f_{1}(u)+\lambda f_{2}(u) \leq 0$

Finite time L^{∞}－blow up may appear with $(\mathbf{M})+(\mathbf{P})$ ！

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { various "good" boundary conditions }
\end{array}\right.
$$

－Theorem：［D．Schmitt－MP，90＇］One can find＇polynomial＇ nonlinearities f, g satisfying（P）and

$$
\text { (M) } f+g \leq 0, \text { and also : } \exists \lambda \in[0,1[, f+\lambda g \leq 0,
$$

for which $T^{*}<+\infty$ with

$$
\lim _{t \rightarrow T^{*}}\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)}=\lim _{t \rightarrow T^{*}}\left\|u_{2}(t)\right\|_{L^{\infty}(\Omega)}=+\infty
$$

Finite time L^{∞}-blow up may appear with $(\mathbf{M})+(\mathbf{P})$!

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { various "good" boundary conditions }
\end{array}\right.
$$

- Theorem: [D. Schmitt-MP, 90'] One can find 'polynomial' nonlinearities f, g satisfying (P) and

$$
\text { (M) } f+g \leq 0, \text { and also : } \exists \lambda \in[0,1[, f+\lambda g \leq 0,
$$

for which $T^{*}<+\infty$ with

$$
\lim _{t \rightarrow T^{*}}\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)}=\lim _{t \rightarrow T^{*}}\left\|u_{2}(t)\right\|_{L^{\infty}(\Omega)}=+\infty
$$

- Blow up may appear even in space dimension $N=1$ (with high degree polynomial nonlinearities)

Finite time L^{∞}-blow up may appear with $(\mathbf{M})+(\mathbf{P})$!

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { various "good" boundary conditions }
\end{array}\right.
$$

- Theorem: [D. Schmitt-Mp, 90.] One can find 'polynomial' nonlinearities f, g satisfying (\mathbf{P}) and

$$
\text { (M) } f+g \leq 0 \text {, and also : } \exists \lambda \in[0,1[, f+\lambda g \leq 0,
$$

for which $T^{*}<+\infty$ with

$$
\lim _{t \rightarrow T^{*}}\left\|u_{1}(t)\right\|_{L^{\infty}(\Omega)}=\lim _{t \rightarrow T^{*}}\left\|u_{2}(t)\right\|_{L^{\infty}(\Omega)}=+\infty .
$$

- Blow up may appear even in space dimension $N=1$ (with high degree polynomial nonlinearities)
- Blow up may appear with any superquadratic growth $2+\epsilon$ for the $f_{i}($ with high dimension $N)$. Optimal! [0. Schnitt-Mp, 22]

To proceed:

Look for weak solutions which are allowed to go out of $L^{\infty}(\Omega)$ from time to time or even often ("Incomplete blow up").

We ask the nonlinearities to be at least in $L^{1}\left(Q_{T}\right)$:

$$
f_{i}(u) \in L^{1}\left(Q_{T}\right)
$$

and the solution is understood in the sense of distributions or of the integral formula :

$$
u_{i}(t)=S_{d_{i}}(t) u_{i}^{0}+\int_{0}^{t} S_{d_{i}}(t-s) f_{i}(u(s)) d s
$$

where $S_{d_{i}}(t)$ is the semigroup generated by the Neumann Laplacian $-d_{i} \Delta$.

An L^{1}-approach

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) \\
\partial_{\nu} u_{i}=0 \\
u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0
\end{array}\right.
$$

- L^{1}-Theorem. [MP 03] Assume (P)+(M') hold. Assume moreover that the following a priori estimate holds:

$$
\forall i=1, \ldots, m, \int_{Q_{T}}\left|f_{i}(u)\right| \leq C(T)<+\infty, \forall T \in(0,+\infty)
$$

Then, there exists a global weak solution for System (S), even for all $u_{0} \in L^{1}(\Omega)^{+m}$!

An L^{1}-approach

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) \\
\partial_{\nu} u_{i}=0 \\
u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0
\end{array}\right.
$$

- L^{1}-Theorem. [MP 03] Assume (\mathbf{P}) $+\left(\mathbf{M}^{\prime}\right)$ hold. Assume moreover that the following a priori estimate holds:

$$
\forall i=1, \ldots, m, \int_{Q_{T}}\left|f_{i}(u)\right| \leq C(T)<+\infty, \forall T \in(0,+\infty)
$$

Then, there exists a global weak solution for System (S), even for all $u_{0} \in L^{1}(\Omega)^{+m}$!

- Proof involves L^{1}-properties of the heat operator and truncations techniques: for $T_{k}(r):=\inf \{r, k\}$, we use the equations satisfied by $T_{k}\left(u_{i}+\eta \sum_{j \neq i} u_{j}\right), \eta$ small.

Main ingredients in the proof of the L^{1}-theorem

- Approximating f_{i} by $f_{i}^{n}:=\frac{f_{i}}{1+\left(\sum_{j}\left|f_{j}\right|\right) / n}$ and u_{i}^{0} by $u_{i}^{0 n}:=\inf \left\{\left(u_{i}^{0}\right), n\right\}$ \mapsto global approximate solutions u_{i}^{n} with $\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)}$ bounded independently of n

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n}=0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0 n} \geq 0
\end{array}\right.
$$

Main ingredients in the proof of the L^{1}-theorem

- Approximating f_{i} by $f_{i}^{n}:=\frac{f_{i}}{1+\left(\sum_{j}\left|f_{j}\right|\right) / n}$ and u_{i}^{0} by $u_{i}^{0 n}:=\inf \left\{\left(u_{i}^{0}\right), n\right\}$ \mapsto global approximate solutions u_{i}^{n} with $\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)}$ bounded independently of n

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n} 0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0 n} \geq 0,
\end{array}\right.
$$

- Compactness of the mapping $\left(g, w_{0}\right) \in L^{1}\left(Q_{T}\right) \times L^{1}(\Omega) \mapsto w \in L^{1}\left(Q_{T}\right)$ where

$$
\partial_{t} w-d \Delta w=g \text { on } Q_{T}, w(0, \cdot)=w_{0}, \partial_{\nu} w=0 \text { on } \partial \Omega .
$$

so that $u_{i}^{n} \rightarrow u_{i}$ in $L^{1}\left(Q_{T}\right)$ and a.e. as $n \rightarrow+\infty$

Main ingredients in the proof of the L^{1}-theorem

- Approximating f_{i} by $f_{i}^{n}:=\frac{f_{i}}{1+\left(\sum_{j}\left|f_{j}\right|\right) / n}$ and u_{i}^{0} by $u_{i}^{0 n}:=\inf \left\{\left(u_{i}^{0}\right), n\right\}$ \mapsto global approximate solutions u_{i}^{n} with $\left\|f_{i}^{n}\left(u^{n}\right)\right\|_{L^{1}\left(Q_{T}\right)}$ bounded independently of n

$$
(S)\left\{\begin{array}{l}
\partial_{t} u_{i}^{n}-d_{i} \Delta u_{i}^{n}=f_{i}^{n}\left(u_{1}^{n}, \ldots, u_{m}^{n}\right) \text { on }(0, \infty) \times \Omega, \\
\partial_{\nu} u_{i}^{n} 0 \text { on }(0, \infty) \times \partial \Omega, \\
u_{i}^{n}(0, \cdot)=u_{i}^{0 n} \geq 0,
\end{array}\right.
$$

- Compactness of the mapping $\left(g, w_{0}\right) \in L^{1}\left(Q_{T}\right) \times L^{1}(\Omega) \mapsto w \in L^{1}\left(Q_{T}\right)$ where

$$
\partial_{t} w-d \Delta w=g \text { on } Q_{T}, w(0, \cdot)=w_{0}, \partial_{\nu} w=0 \text { on } \partial \Omega .
$$

so that $u_{i}^{n} \rightarrow u_{i}$ in $L^{1}\left(Q_{T}\right)$ and a.e. as $n \rightarrow+\infty$

- Proof involves L^{1}-type estimates of the heat operator like

$$
\int_{\left[0 \leq u_{i}^{n} \leq k\right]} d_{i}\left|\nabla u_{i}^{n}\right|^{2} \leq k\left[\int_{Q_{T}}\left|f_{i}^{n}\left(u^{n}\right)\right|+\int_{\Omega} u_{i}^{0 n}\right] .
$$

L^{1}-Theorem applies to many situations

$$
\left\{\begin{aligned}
\partial_{t} u_{1}-d_{1} \Delta u_{1} & =-u_{1} e^{u_{2}^{2}} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2} & =u_{1} e^{u_{2}^{2}}
\end{aligned}\right.
$$

- Easy $L^{1}\left(Q_{T}\right)$-estimate of the nonlinearity :

$$
\int_{\Omega} u_{1}(T)+\int_{Q_{T}} u_{1} e^{u_{2}^{2}}=\int_{\Omega} u_{1}^{0}
$$

L^{1}-Theorem applies to many situations

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} e^{u_{2}^{2}} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} e^{u_{2}^{2}}
\end{array}\right.
$$

- Easy $L^{1}\left(Q_{T}\right)$-estimate of the nonlinearity :

$$
\int_{\Omega} u_{1}(T)+\int_{Q_{T}} u_{1} e^{u_{2}^{2}}=\int_{\Omega} u_{1}^{0}
$$

- \Rightarrow Global existence of weak solutions

L^{1}-Theorem applies to many situations

$$
\left\{\begin{aligned}
\partial_{t} u_{1}-d_{1} \Delta u_{1} & =-u_{1} e^{u_{2}^{2}} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2} & =u_{1} e^{u_{2}^{2}}
\end{aligned}\right.
$$

- Easy $L^{1}\left(Q_{T}\right)$-estimate of the nonlinearity :

$$
\int_{\Omega} u_{1}(T)+\int_{Q_{T}} u_{1} e^{u_{2}^{2}}=\int_{\Omega} u_{1}^{0}
$$

- \Rightarrow Global existence of weak solutions
- Existence holds for any $u_{1}^{0}, u_{2}^{0} \in L^{1}(\Omega)^{+}$!!

L^{1}-Theorem applies to many situations

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} e^{u_{2}^{2}} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} e^{u_{2}^{2}}
\end{array}\right.
$$

- Easy $L^{1}\left(Q_{T}\right)$-estimate of the nonlinearity :

$$
\int_{\Omega} u_{1}(T)+\int_{Q_{T}} u_{1} e^{u_{2}^{2}}=\int_{\Omega} u_{1}^{0}
$$

- \Rightarrow Global existence of weak solutions
- Existence holds for any $u_{1}^{0}, u_{2}^{0} \in L^{1}(\Omega)^{+}$!!
- Recall that the equation

$$
\partial_{t} u_{2}-\Delta u_{2}=e^{u_{2}^{2}}, u_{2}(0)=u_{2}^{0}
$$

does not have even local solutions in general when $u_{2}^{0} \in L^{1}(\Omega)^{+}$only.
L^{1}-Theorem applies to many situations

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=-u_{1} e^{u_{2}^{2}} \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=u_{1} e^{u_{2}^{2}}
\end{array}\right.
$$

- Easy $L^{1}\left(Q_{T}\right)$-estimate of the nonlinearity :

$$
\int_{\Omega} u_{1}(T)+\int_{Q_{T}} u_{1} e^{u_{2}^{2}}=\int_{\Omega} u_{1}^{0}
$$

- \Rightarrow Global existence of weak solutions
- Existence holds for any $u_{1}^{0}, u_{2}^{0} \in L^{1}(\Omega)^{+}$!!
- Recall that the equation

$$
\partial_{t} u_{2}-\Delta u_{2}=e^{u_{2}^{2}}, u_{2}(0)=u_{2}^{0}
$$

does not have even local solutions in general when $u_{2}^{0} \in L^{1}(\Omega)^{+}$only.

- OPEN PROBLEM: are the solutions classical ?

L^{1}-approach applies to many situations

- Like to the example of finite-time blow up in $L^{\infty}(\Omega)$:

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { bdy and initial conditions and }
\end{array}\right.
$$

(M) $f_{1}+f_{2} \leq 0$, and also: $\exists \lambda \neq 1, f_{1}+\lambda f_{2} \leq 0$,

L^{1}-approach applies to many situations

- Like to the example of finite-time blow up in $L^{\infty}(\Omega)$:

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { bdy and initial conditions and }
\end{array}\right.
$$

(M) $f_{1}+f_{2} \leq 0$, and also: $\exists \lambda \neq 1, f_{1}+\lambda f_{2} \leq 0$,
$-\partial_{t}\left(u_{1}+u_{2}\right)-\Delta\left(d_{1} u_{1}+d_{2} u_{2}\right)-\left(f_{1}(u)+f_{2}(u)\right)=0$.

L^{1}-approach applies to many situations

- Like to the example of finite-time blow up in $L^{\infty}(\Omega)$:

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { bdy and initial conditions and }
\end{array}\right.
$$

(M) $f_{1}+f_{2} \leq 0$, and also: $\exists \lambda \neq 1, f_{1}+\lambda f_{2} \leq 0$,

- $\partial_{t}\left(u_{1}+u_{2}\right)-\Delta\left(d_{1} u_{1}+d_{2} u_{2}\right)-\left(f_{1}(u)+f_{2}(u)\right)=0$.
- With $\partial_{\nu} u_{1}=0=\partial_{\nu} u_{2}$ on $\partial \Omega$, we deduce:

$$
\int_{\Omega} \partial_{t}\left(u_{1}+u_{2}\right)+0+\int_{\Omega}-\left(f_{1}(u)+f_{2}(u)\right)=0
$$

L^{1}-approach applies to many situations

- Like to the example of finite-time blow up in $L^{\infty}(\Omega)$:

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { bdy and initial conditions and }
\end{array}\right.
$$

(M) $f_{1}+f_{2} \leq 0$, and also: $\exists \lambda \neq 1, f_{1}+\lambda f_{2} \leq 0$,

- $\partial_{t}\left(u_{1}+u_{2}\right)-\Delta\left(d_{1} u_{1}+d_{2} u_{2}\right)-\left(f_{1}(u)+f_{2}(u)\right)=0$.
- With $\partial_{\nu} u_{1}=0=\partial_{\nu} u_{2}$ on $\partial \Omega$, we deduce:

$$
\int_{\Omega} \partial_{t}\left(u_{1}+u_{2}\right)+0+\int_{\Omega}-\left(f_{1}(u)+f_{2}(u)\right)=0
$$

$\Rightarrow \Rightarrow \int_{\Omega}\left(u_{1}+u_{2}\right)(T)+\int_{Q_{T}}\left|f_{1}(u)+f_{2}(u)\right|=\int_{\Omega}\left(u_{1}^{0}+u_{2}^{0}\right)$.

L^{1}-approach applies to many situations

- Like to the example of finite-time blow up in $L^{\infty}(\Omega)$:

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { bdy and initial conditions and }
\end{array}\right.
$$

(M) $f_{1}+f_{2} \leq 0$, and also: $\exists \lambda \neq 1, f_{1}+\lambda f_{2} \leq 0$,

- $\partial_{t}\left(u_{1}+u_{2}\right)-\Delta\left(d_{1} u_{1}+d_{2} u_{2}\right)-\left(f_{1}(u)+f_{2}(u)\right)=0$.
- With $\partial_{\nu} u_{1}=0=\partial_{\nu} u_{2}$ on $\partial \Omega$, we deduce:

$$
\int_{\Omega} \partial_{t}\left(u_{1}+u_{2}\right)+0+\int_{\Omega}-\left(f_{1}(u)+f_{2}(u)\right)=0 .
$$

$\Rightarrow \Rightarrow \int_{\Omega}\left(u_{1}+u_{2}\right)(T)+\int_{Q_{T}}\left|f_{1}(u)+f_{2}(u)\right|=\int_{\Omega}\left(u_{1}^{0}+u_{2}^{0}\right)$.

- $\int_{Q_{T}}\left|f_{1}(u)+f_{2}(u)\right| \leq C\left[=C\left(\left\|u_{1}^{0}\right\|_{L^{1}},\left\|u_{2}^{0}\right\|_{L^{1}}\right)\right]$.

L^{1}-approach applies to many situations

- Like to the example of finite-time blow up in $L^{\infty}(\Omega)$:

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { bdy and initial conditions and }
\end{array}\right.
$$

(M) $f_{1}+f_{2} \leq 0$, and also: $\exists \lambda \neq 1, f_{1}+\lambda f_{2} \leq 0$,

- $\partial_{t}\left(u_{1}+u_{2}\right)-\Delta\left(d_{1} u_{1}+d_{2} u_{2}\right)-\left(f_{1}(u)+f_{2}(u)\right)=0$.
- With $\partial_{\nu} u_{1}=0=\partial_{\nu} u_{2}$ on $\partial \Omega$, we deduce:

$$
\int_{\Omega} \partial_{t}\left(u_{1}+u_{2}\right)+0+\int_{\Omega}-\left(f_{1}(u)+f_{2}(u)\right)=0 .
$$

$\Rightarrow \Rightarrow \int_{\Omega}\left(u_{1}+u_{2}\right)(T)+\int_{Q_{T}}\left|f_{1}(u)+f_{2}(u)\right|=\int_{\Omega}\left(u_{1}^{0}+u_{2}^{0}\right)$.

- $\int_{Q_{T}}\left|f_{1}(u)+f_{2}(u)\right| \leq C\left[=C\left(\left\|u_{1}^{0}\right\|_{L^{1}},\left\|u_{2}^{0}\right\|_{L^{1}}\right)\right]$.
- Similarly $\int_{Q_{T}}\left|f_{1}(u)+\lambda f_{2}(u)\right| \leq C, \lambda \neq 1$.

L^{1}-approach applies to many situations

- Like to the example of finite-time blow up in $L^{\infty}(\Omega)$:

$$
\left\{\begin{array}{l}
\partial_{t} u_{1}-d_{1} \Delta u_{1}=f_{1}\left(u_{1}, u_{2}\right) \\
\partial_{t} u_{2}-d_{2} \Delta u_{2}=f_{2}\left(u_{1}, u_{2}\right) \\
+ \text { bdy and initial conditions and }
\end{array}\right.
$$

(M) $f_{1}+f_{2} \leq 0$, and also: $\exists \lambda \neq 1, f_{1}+\lambda f_{2} \leq 0$,

- $\partial_{t}\left(u_{1}+u_{2}\right)-\Delta\left(d_{1} u_{1}+d_{2} u_{2}\right)-\left(f_{1}(u)+f_{2}(u)\right)=0$.
- With $\partial_{\nu} u_{1}=0=\partial_{\nu} u_{2}$ on $\partial \Omega$, we deduce:

$$
\int_{\Omega} \partial_{t}\left(u_{1}+u_{2}\right)+0+\int_{\Omega}-\left(f_{1}(u)+f_{2}(u)\right)=0
$$

$\Rightarrow \Rightarrow \int_{\Omega}\left(u_{1}+u_{2}\right)(T)+\int_{Q_{T}}\left|f_{1}(u)+f_{2}(u)\right|=\int_{\Omega}\left(u_{1}^{0}+u_{2}^{0}\right)$.
$-\int_{Q_{T}}\left|f_{1}(u)+f_{2}(u)\right| \leq C\left[=C\left(\left\|u_{1}^{0}\right\|_{L^{1}},\left\|u_{2}^{0}\right\|_{L^{1}}\right)\right]$.

- Similarly $\int_{Q_{T}}\left|f_{1}(u)+\lambda f_{2}(u)\right| \leq C, \lambda \neq 1$.
$\triangleright \Rightarrow \int_{Q_{T}}\left|f_{1}(u)\right|, \int_{Q_{T}}\left|f_{2}(u)\right| \leq C$.

L^{1}－Theorem applies to many situations

More generally，the same method applies if there exists an invertible matrix Q with nonnegative entries such that

$$
\forall r \in[0, \infty)^{m}, Q f(r) \leq\left[1+\sum_{1 \leq i \leq m} r_{i}\right] \mathrm{b},
$$

for some $\mathrm{b} \in \boldsymbol{R}^{m}, f=\left(f_{1}, \ldots, f_{m}\right)^{t}$ ．
In other words：
if there are m independent inequalities between the f_{i}＇s（not necessarily triangular）

Case of strictly less than m inequalities

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) \\
\partial_{\nu} u_{i}=0 \\
u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 .
\end{array}\right.
$$

- On the other hand, what about the system (S) with only $[[(\mathbf{P})+$ strictly less than m inequalities $]]$,
...i.e. without a priori $L^{1}\left(Q_{T}\right)$-estimates on $f_{i}(u)$???

Case of strictly less than m inequalities

$(S)\left\{\begin{array}{l}\forall i=1, \ldots, m \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) \\ \partial_{\nu} u_{i}=0 \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 .\end{array}\right.$

- On the other hand, what about the system (S) with only $[[(\mathbf{P})+$ strictly less than m inequalities $]]$, ...i.e. without a priori $L^{1}\left(Q_{T}\right)$-estimates on $f_{i}(u)$???
- This is the case for the evolution of the concentrations of m chemical species $U_{i}, i=1, \ldots, m$ undergoing reversible reaction together with diffusion, namely with $p_{i}, q_{i} \in\{0\} \cup[1,+\infty)$:

$$
p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \stackrel{k^{+}}{\stackrel{k^{-}}{\rightleftharpoons}} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}
$$

Case of strictly less than m inequalities

$(S)\left\{\begin{array}{l}\forall i=1, \ldots, m \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) \\ \partial_{\nu} u_{i}=0 \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 .\end{array}\right.$

- On the other hand, what about the system (S) with only $[[(\mathbf{P})+$ strictly less than m inequalities]], ...i.e. without a priori $L^{1}\left(Q_{T}\right)$-estimates on $f_{i}(u)$???
- This is the case for the evolution of the concentrations of m chemical species $U_{i}, i=1, \ldots, m$ undergoing reversible reaction together with diffusion, namely with $p_{i}, q_{i} \in\{0\} \cup[1,+\infty)$:

$$
p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \stackrel{k^{+}}{\stackrel{k^{-}}{\rightleftharpoons}} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}
$$

- The concentrations $u_{i}(t, x)$ of U_{i} satisfy a system of type (S) when the state laws are given by
- the mass action kinetics for the reaction,
- the (linear) Fick's law for the diffusion.

Evolution models for reversible chemistry

- Principle of mass action kinetics: the rate of a reaction is proportional to the concentration of the reactants [P.Waage, C.M.Guldberg,1864].

Evolution models for reversible chemistry

- Principle of mass action kinetics: the rate of a reaction is proportional to the concentration of the reactants [P.Waage, C.M.Guldberg,1864].
- $U_{1} \rightarrow U_{2}$ with $u_{i}(t)=$ concentration of U_{i}

$$
u_{1}^{\prime}(t)=-u_{2}^{\prime}(t)=-k u_{1}(t) \text { for some } k>0
$$

Evolution models for reversible chemistry

- Principle of mass action kinetics: the rate of a reaction is proportional to the concentration of the reactants [P.Waage, C.M.Guldberg,1864].
- $U_{1} \rightarrow U_{2}$ with $u_{i}(t)=$ concentration of U_{i}

$$
u_{1}^{\prime}(t)=-u_{2}^{\prime}(t)=-k u_{1}(t) \text { for some } k>0 .
$$

- $U_{1}+p_{2} U_{2} \rightarrow q_{3} U_{3}$

$$
u_{1}^{\prime}(t)=p_{2}^{-1} u_{2}^{\prime}(t)=-q_{3}^{-1} u_{3}^{\prime}(t)=-k u_{1} u_{2}^{p_{2}} .
$$

Evolution models for reversible chemistry

- Principle of mass action kinetics: the rate of a reaction is proportional to the concentration of the reactants [P.Waage, C.M.Guldberg,1864].
- $U_{1} \rightarrow U_{2}$ with $u_{i}(t)=$ concentration of U_{i}

$$
u_{1}^{\prime}(t)=-u_{2}^{\prime}(t)=-k u_{1}(t) \text { for some } k>0 .
$$

- $U_{1}+p_{2} U_{2} \rightarrow q_{3} U_{3}$

$$
u_{1}^{\prime}(t)=p_{2}^{-1} u_{2}^{\prime}(t)=-q_{3}^{-1} u_{3}^{\prime}(t)=-k u_{1} u_{2}^{p_{2}} .
$$

- $U_{1}+p_{2} U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{\rightleftharpoons}} q_{3} U_{3}$

$$
u_{1}^{\prime}=p_{2}^{-1} u_{2}^{\prime}=-q_{3}^{-1} u_{3}^{\prime}=-k^{+} u_{1} u_{2}^{p_{2}}+k^{-} u_{3}^{q_{3}} .
$$

Evolution models for reversible chemistry

- Principle of mass action kinetics: the rate of a reaction is proportional to the concentration of the reactants [P.Waage, C.M.Guldberg,1864].
- $U_{1} \rightarrow U_{2}$ with $u_{i}(t)=$ concentration of U_{i}

$$
u_{1}^{\prime}(t)=-u_{2}^{\prime}(t)=-k u_{1}(t) \text { for some } k>0 .
$$

- $U_{1}+p_{2} U_{2} \rightarrow q_{3} U_{3}$

$$
u_{1}^{\prime}(t)=p_{2}^{-1} u_{2}^{\prime}(t)=-q_{3}^{-1} u_{3}^{\prime}(t)=-k u_{1} u_{2}^{p_{2}} .
$$

- $U_{1}+p_{2} U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{\rightleftharpoons}} q_{3} U_{3}$

$$
u_{1}^{\prime}=p_{2}^{-1} u_{2}^{\prime}=-q_{3}^{-1} u_{3}^{\prime}=-k^{+} u_{1} u_{2}^{p_{2}}+k^{-} u_{3}^{q_{3}} .
$$

- $U_{1}+p_{2} U_{2} \stackrel{k^{+}}{\stackrel{k^{-}}{\rightleftharpoons}} q_{2} U_{2}+q_{3} U_{3}$

$$
u_{1}^{\prime}=\left(p_{2}-q_{2}\right)^{-1} u_{2}^{\prime}=-q_{3}^{-1} u_{3}^{\prime}=-k^{+} u_{1} u_{2}^{p_{2}}+k^{-} u_{3}^{q_{3}} .
$$

Evolution models for reversible chemistry

$$
\begin{gathered}
p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \underset{\overrightarrow{k^{-}}}{\stackrel{k^{+}}{2}} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m} \\
u_{i}^{\prime}=\left(q_{i}-p_{i}\right)\left[k^{+} \prod_{j} u_{j}^{p_{j}}-k^{-} \prod_{j} u_{j}^{q_{j}}\right], \quad i=1, \ldots, m
\end{gathered}
$$

Evolution models for reversible chemistry

- $p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \stackrel{k^{+}}{\overrightarrow{k^{-}}} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}$.

$$
u_{i}^{\prime}=\left(q_{i}-p_{i}\right)\left[k^{+} \prod_{j} u_{j}^{p_{j}}-k^{-} \prod_{j} u_{j}^{q_{j}}\right], \quad i=1, \ldots, m
$$

- When $u_{i}=u_{i}(t, x), u_{i}^{\prime}(t)$ is to be replaced by $\partial_{t} u_{i}+\nabla \cdot\left(u_{i} V_{i}\right)$ where $V_{i}=$ velocity of the U_{i}-particules.

Evolution models for reversible chemistry

- $p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \stackrel{k^{+}}{\stackrel{k^{-}}{ }} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}$.

$$
u_{i}^{\prime}=\left(q_{i}-p_{i}\right)\left[k^{+} \prod_{j} u_{j}^{p_{j}}-k^{-} \prod_{j} u_{j}^{q_{j}}\right], \quad i=1, \ldots, m
$$

- When $u_{i}=u_{i}(t, x), u_{i}^{\prime}(t)$ is to be replaced by $\partial_{t} u_{i}+\nabla \cdot\left(u_{i} V_{i}\right)$ where $V_{i}=$ velocity of the U_{i}-particules.
- Fick's law for the diffusion says:

$$
u_{i} V_{i}=-d_{i} \nabla u_{i}, \quad d_{i} \in(0,+\infty)
$$

Evolution models for reversible chemistry

- $p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \stackrel{k^{+}}{\overrightarrow{k^{-}}} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}$.

$$
u_{i}^{\prime}=\left(q_{i}-p_{i}\right)\left[k^{+} \prod_{j} u_{j}^{p_{j}}-k^{-} \prod_{j} u_{j}^{q_{j}}\right], \quad i=1, \ldots, m
$$

- When $u_{i}=u_{i}(t, x), u_{i}^{\prime}(t)$ is to be replaced by $\partial_{t} u_{i}+\nabla \cdot\left(u_{i} V_{i}\right)$ where $V_{i}=$ velocity of the U_{i}-particules.
- Fick's law for the diffusion says:

$$
u_{i} V_{i}=-d_{i} \nabla u_{i}, \quad d_{i} \in(0,+\infty)
$$

- Whence the global system for $u=\left(u_{i}\right)_{1 \leq i \leq m}$:

$$
\left\{\begin{array}{l}
\forall i=1, \ldots, m, \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=\left(q_{i}-p_{i}\right) h(u), \\
h(u)=k^{+} \prod_{j} u_{j}^{p_{j}}-k^{-} \prod_{j} u_{j}^{q_{j}}
\end{array}\right.
$$

Evolution models for reversible chemistry

- $p_{1} U_{1}+p_{2} U_{2}+\ldots+p_{m} U_{m} \underset{\overrightarrow{k^{-}}}{\stackrel{k^{+}}{ }} q_{1} U_{1}+q_{2} U_{2}+\ldots+q_{m} U_{m}$.

$$
u_{i}^{\prime}=\left(q_{i}-p_{i}\right)\left[k^{+} \prod_{j} u_{j}^{p_{j}}-k^{-} \prod_{j} u_{j}^{q_{j}}\right], \quad i=1, \ldots, m
$$

- When $u_{i}=u_{i}(t, x), u_{i}^{\prime}(t)$ is to be replaced by $\partial_{t} u_{i}+\nabla \cdot\left(u_{i} V_{i}\right)$ where $V_{i}=$ velocity of the U_{i}-particules.
- Fick's law for the diffusion says:

$$
u_{i} V_{i}=-d_{i} \nabla u_{i}, \quad d_{i} \in(0,+\infty)
$$

- Whence the global system for $u=\left(u_{i}\right)_{1 \leq i \leq m}$:

$$
\left\{\begin{array}{l}
\forall i=1, \ldots, m, \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=\left(q_{i}-p_{i}\right) h(u), \\
h(u)=k^{+} \prod_{j} u_{j}^{p_{j}}-k^{-} \prod_{j} u_{j}^{q_{j}}
\end{array}\right.
$$

- And we may add: $\partial_{\nu} u_{i}=0$ on $\partial \Omega$ for all i.

Evolution model for the reversible chemistry

$$
\text { (S) }\left\{\begin{array}{l}
\forall i=1, \ldots, m, \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u):=\left(q_{i}-p_{i}\right) h(u), \\
h(u):=k^{+} \Pi_{j} u_{j}-k^{-} \Pi_{j} u_{j}^{j}, \\
\partial_{\nu} u_{i}=0, u_{i}(0, \cdot)=u_{i}^{0} .
\end{array}\right.
$$

- The nonlinearity $f=\left(f_{i}\right)$ is quasipositive.

Evolution model for the reversible chemistry

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m, \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u):=\left(q_{i}-p_{i}\right) h(u), \\
h(u):=k^{+} \Pi_{j} u_{j}^{p_{j}}-k^{-} \Pi_{j} u_{j}^{j}, \\
\partial_{\nu} u_{i}=0, u_{i}(0, \cdot)=u_{i}^{0} .
\end{array}\right.
$$

- The nonlinearity $f=\left(f_{i}\right)$ is quasipositive.
- There are (only) $m-1$ independent (in)equalities:

$$
\begin{aligned}
\left(q_{j}-p_{j}\right) f_{i}+\left(p_{i}-q_{i}\right) f_{j} & =0, \quad i \in I, \quad j \in I \\
I:=\left\{i=1, \ldots, m ; q_{i}-p_{i}<0\right\}, \quad J: & =\left\{j=1, \ldots, m ; q_{j}-p_{j}>0\right\} .
\end{aligned}
$$

Evolution model for the reversible chemistry

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m, \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u):=\left(q_{i}-p_{i}\right) h(u), \\
h(u):=k^{+} \Pi_{j} u_{j}^{p_{j}}-k^{-} \Pi_{j} u_{j}^{j}, \\
\partial_{\nu} u_{i}=0, u_{i}(0, \cdot)=u_{i}^{0} .
\end{array}\right.
$$

- The nonlinearity $f=\left(f_{i}\right)$ is quasipositive.
- There are (only) $m-1$ independent (in)equalities:

$$
\begin{aligned}
\left(q_{j}-p_{j}\right) f_{i}+\left(p_{i}-q_{i}\right) f_{j} & =0, \quad i \in I, \quad j \in I \\
I:=\left\{i=1, \ldots, m ; q_{i}-p_{i}<0\right\}, \quad J: & =\left\{j=1, \ldots, m ; q_{j}-p_{j}>0\right\}
\end{aligned}
$$

- There is an entropy inequality: if $k^{+}=1=k^{-}$

$$
\left\{\begin{array}{rl}
\sum_{i}\left(\log u_{i}\right) f_{i}(u) & =h(u) \sum_{i}\left(\log u_{i}\right)\left(q_{i}-p_{i}\right) \\
& =h(u)\left[\log \prod_{i} u_{i}^{q_{i}}-\log \Pi_{i} u_{i}^{p_{i}}\right] \leq 0
\end{array},\right.
$$

Existence of global renormalized solutions

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u):=\left(q_{i}-p_{i}\right) h(u) \\
h(u):=k^{+} \Pi_{j} u_{j}^{p_{j}}-k^{-} \Pi_{j} u_{j}^{q_{j}} \\
\partial_{\nu} u_{i}=0, u_{i}(0, \cdot)=u_{i}^{0} \log u_{i}^{0} \in L^{1}(\Omega)
\end{array}\right.
$$

- Let u^{ϵ} be the solution of $\partial_{t} u_{i}^{\epsilon}-d_{i} \Delta u_{i}^{\epsilon}=f_{i}\left(u^{\epsilon}\right) /\left[1+\epsilon \sum_{j}\left|f_{j}\left(u^{\epsilon}\right)\right|\right]$.
\rightarrow THEOREM [J. Fischer, '2014] The approximate solution u^{ϵ} converges (up to a subsequence) on Q_{∞} to some u with

$$
u_{i} \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \sqrt{u_{i}} \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \forall T>0
$$

such that for all $\xi:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ compactly supported

$$
\partial_{t} \xi(u)=\sum_{i} \partial_{i} \xi(u) \partial_{t} u_{i}=\sum_{i} \partial_{i} \xi(u)\left[d_{i} \Delta u_{i}+f_{i}(u)\right]
$$

in a weak sense against test-functions.

Existence of global renormalized solutions

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u):=\left(q_{i}-p_{i}\right) h(u) \\
h(u):=k^{+} \Pi_{j} u_{j}^{p_{j}}-k^{-} \Pi_{j} u_{j}^{q_{j}} \\
\partial_{\nu} u_{i}=0, u_{i}(0, \cdot)=u_{i}^{0} \log u_{i}^{0} \in L^{1}(\Omega)
\end{array}\right.
$$

- Let u^{ϵ} be the solution of $\partial_{t} u_{i}^{\epsilon}-d_{i} \Delta u_{i}^{\epsilon}=f_{i}\left(u^{\epsilon}\right) /\left[1+\epsilon \sum_{j}\left|f_{j}\left(u^{\epsilon}\right)\right|\right]$.
\rightarrow THEOREM [J. Fischer, '2014] The approximate solution u^{ϵ} converges (up to a subsequence) on Q_{∞} to some u with

$$
u_{i} \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \sqrt{u_{i}} \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \forall T>0
$$

such that for all $\xi:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ compactly supported

$$
\partial_{t} \xi(u)=\sum_{i} \partial_{i} \xi(u) \partial_{t} u_{i}=\sum_{i} \partial_{i} \xi(u)\left[d_{i} \Delta u_{i}+f_{i}(u)\right]
$$

in a weak sense against test-functions.

- Solutions "à la Di Perna-Lions". Note $\partial_{i} \xi(u) f_{i}(u) \in L^{\infty}$!

Existence of global renormalized solutions

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u):=\left(q_{i}-p_{i}\right) h(u) \\
h(u):=k^{+} \Pi_{j} u_{j}^{p_{j}}-k^{-} \Pi_{j} u_{j}^{q_{j}} \\
\partial_{\nu} u_{i}=0, u_{i}(0, \cdot)=u_{i}^{0} \log u_{i}^{0} \in L^{1}(\Omega)
\end{array}\right.
$$

- Let u^{ϵ} be the solution of $\partial_{t} u_{i}^{\epsilon}-d_{i} \Delta u_{i}^{\epsilon}=f_{i}\left(u^{\epsilon}\right) /\left[1+\epsilon \sum_{j}\left|f_{j}\left(u^{\epsilon}\right)\right|\right]$.
- THEOREM [J. Fischer, '2014] The approximate solution u^{ϵ} converges (up to a subsequence) on Q_{∞} to some u with

$$
u_{i} \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \sqrt{u_{i}} \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \forall T>0
$$

such that for all $\xi:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ compactly supported

$$
\partial_{t} \xi(u)=\sum_{i} \partial_{i} \xi(u) \partial_{t} u_{i}=\sum_{i} \partial_{i} \xi(u)\left[d_{i} \Delta u_{i}+f_{i}(u)\right]
$$

in a weak sense against test-functions.

- Solutions "à la Di Perna-Lions". Note $\partial_{i} \xi(u) f_{i}(u) \in L^{\infty}$!
- Strong use of the entropy dissipation in the proof.

Existence of global renormalized solutions

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m, \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u):=\left(q_{i}-p_{i}\right) h(u), \\
h(u):=k^{+} \Pi_{j} u_{j}-k^{-} \eta_{j} u_{j}^{j_{j}}, \\
\partial_{\nu} u_{i}=0, u_{i}(0, \cdot)=u_{i}^{0} \log u_{i}^{0} \in L^{1}(\Omega) .
\end{array}\right.
$$

- Let u^{ϵ} be the solution of $\partial_{t} u_{i}^{\epsilon}-d_{i} \Delta u_{i}^{\epsilon}=f_{i}\left(u^{\epsilon}\right) /\left[1+\epsilon \sum_{j}\left|f_{j}\left(u^{\epsilon}\right)\right|\right]$.
- THEOREM [J. Fischer, '2014] The approximate solution u^{ϵ} converges (up to a subsequence) on Q_{∞} to some u with

$$
u_{i} \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \sqrt{u_{i}} \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \forall T>0
$$

such that for all $\xi:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ compactly supported

$$
\partial_{t} \xi(u)=\sum_{i} \partial_{i} \xi(u) \partial_{t} u_{i}=\sum_{i} \partial_{i} \xi(u)\left[d_{i} \Delta u_{i}+f_{i}(u)\right]
$$

in a weak sense against test-functions.

- Solutions "à la Di Perna-Lions". Note $\partial_{i} \xi(u) f_{i}(u) \in L^{\infty}$!
- Strong use of the entropy dissipation in the proof.
- OPEN PROBLEM: What about classical solutions ???

Existence of global renormalized solutions

$$
(S)\left\{\begin{array}{l}
\forall i=1, \ldots, m, \\
\partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}(u):=\left(q_{i}-p_{i}\right) h(u), \\
h(u):=k^{+} \Pi_{j} u_{j}-k^{-} \eta_{j} u_{j}^{j_{j}}, \\
\partial_{\nu} u_{i}=0, u_{i}(0, \cdot)=u_{i}^{0} \log u_{i}^{0} \in L^{1}(\Omega) .
\end{array}\right.
$$

- Let u^{ϵ} be the solution of $\partial_{t} u_{i}^{\epsilon}-d_{i} \Delta u_{i}^{\epsilon}=f_{i}\left(u^{\epsilon}\right) /\left[1+\epsilon \sum_{j}\left|f_{j}\left(u^{\epsilon}\right)\right|\right]$.
- THEOREM [J. Fischer, '2014] The approximate solution u^{ϵ} converges (up to a subsequence) on Q_{∞} to some u with

$$
u_{i} \in L^{\infty}\left(0, T ; L^{1}(\Omega)\right), \sqrt{u_{i}} \in L^{2}\left(0, T ; H^{1}(\Omega)\right), \forall T>0
$$

such that for all $\xi:[0, \infty)^{m} \rightarrow \boldsymbol{R}$ compactly supported

$$
\partial_{t} \xi(u)=\sum_{i} \partial_{i} \xi(u) \partial_{t} u_{i}=\sum_{i} \partial_{i} \xi(u)\left[d_{i} \Delta u_{i}+f_{i}(u)\right]
$$

in a weak sense against test-functions.

- Solutions "à la Di Perna-Lions". Note $\partial_{i} \xi(u) f_{i}(u) \in L^{\infty}$!
- Strong use of the entropy dissipation in the proof.
- OPEN PROBLEM: What about classical solutions ???
- Even : what about weak solutions ?? $\Leftrightarrow f_{i}(u) \in L^{1}\left(Q_{T}\right)$???

A surprising L^{2}-estimate for the systems ($\left.\mathbf{P}\right)+\left(\mathbf{M}^{\prime}\right)$

$$
(S) \begin{cases}\forall i=1, \ldots, m & \text { in } Q_{T} \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { on } \Sigma_{T} \\ \partial_{\nu} u_{i}=0 & \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- L^{2}-Theorem. Assume (P)+(M'). Then, the following a priori estimate holds for the solutions of (S) :

$$
\forall T>0, \quad \int_{Q_{T}} \sum_{i=1}^{m} u_{i}^{2} \leq C \int_{\Omega}\left(\sum_{i=1}^{m} u_{i}^{0}\right)^{2}, C=C\left(T,\left(d_{i}\right)\right) .
$$

A surprising L^{2}-estimate for the systems ($\left.\mathbf{P}\right)+\left(\mathbf{M}^{\prime}\right)$

$$
\text { (S) } \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- L^{2}-Theorem. Assume ($\mathbf{P} \mathbf{)}+\left(\mathbf{M}^{\prime}\right)$. Then, the following a priori estimate holds for the solutions of (S) :

$$
\forall T>0, \quad \int_{Q_{T}} \sum_{i=1}^{m} u_{i}^{2} \leq C \int_{\Omega}\left(\sum_{i=1}^{m} u_{i}^{0}\right)^{2}, C=C\left(T,\left(d_{i}\right)\right) .
$$

- The proof uses only the sum of the equations

$$
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0
$$

Idea of the proof of the L^{2}-estimate

$$
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0
$$

Idea of the proof of the L^{2}-estimate

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0 \\
\partial_{t} W-\Delta(a W) \leq 0, \quad W=\sum_{i} u_{i}, \quad a=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}}
\end{gathered}
$$

Idea of the proof of the L^{2}-estimate

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0 \\
\partial_{t} W-\Delta(a W) \leq 0, \quad W=\sum_{i} u_{i}, a=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \\
0 \leq \underline{d}=\min _{i} d_{i} \leq a=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \leq \max _{i} d_{i}=\bar{d}<+\infty
\end{gathered}
$$

Idea of the proof of the L^{2}-estimate

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0 \\
\partial_{t} W-\Delta(a W) \leq 0, W=\sum_{i} u_{i}, \quad a=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \\
0 \leq \underline{d}=\min _{i} d_{i} \leq a=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \leq \max _{i} d_{i}=\bar{d}<+\infty
\end{gathered}
$$

- The operator $W \rightarrow \partial_{t} W-\Delta(a W)$ is not of divergence form and a is not continuous, but bounded from above and from below so that the operator is parabolic and this implies

$$
\|W\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2}(\Omega)}
$$

Idea of the proof of the L^{2}-estimate

$$
\begin{gathered}
\partial_{t}\left(\sum_{i} u_{i}\right)-\Delta\left(\sum_{i} d_{i} u_{i}\right) \leq 0 \\
\partial_{t} W-\Delta(a W) \leq 0, \quad W=\sum_{i} u_{i}, \quad a=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \\
0 \leq \underline{d}=\min _{i} d_{i} \leq a=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}} \leq \max _{i} d_{i}=\bar{d}<+\infty
\end{gathered}
$$

- The operator $W \rightarrow \partial_{t} W-\Delta(a W)$ is not of divergence form and a is not continuous, but bounded from above and from below so that the operator is parabolic and this implies

$$
\|W\|_{L^{2}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2}(\Omega)}
$$

- Seen on the dual operator $\psi \rightarrow-\left(\partial_{t} \psi+a \Delta \psi\right)$ which satisfies L^{2}-maximal regularity in terms of \underline{d}, \bar{d}.

A proof of the L^{2}-estimate by duality

- We multiply the inequality $\partial_{t} W-\Delta(a W) \leq 0$, by the solution $\psi \geq 0$ of the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+a \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right)^{+} \\
\psi(T)=0, \partial_{\nu} \psi=0
\end{array}\right.
$$

A proof of the L^{2}-estimate by duality

- We multiply the inequality $\partial_{t} W-\Delta(a W) \leq 0$, by the solution $\psi \geq 0$ of the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+a \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right)^{+} \\
\psi(T)=0, \partial_{\nu} \psi=0
\end{array}\right.
$$

$\Rightarrow \Rightarrow \int_{Q_{T}} W \Theta=\int_{\Omega} W_{0} \psi(0) \leq\left\|W_{0}\right\|_{L^{2}(\Omega)}\|\psi(0)\|_{L^{2}(\Omega)}$.

A proof of the L^{2}-estimate by duality

- We multiply the inequality $\partial_{t} W-\Delta(a W) \leq 0$, by the solution $\psi \geq 0$ of the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+a \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right)^{+} \\
\psi(T)=0, \partial_{\nu} \psi=0
\end{array}\right.
$$

$\Rightarrow \Rightarrow \int_{Q_{T}} W \Theta=\int_{\Omega} W_{0} \psi(0) \leq\left\|W_{0}\right\|_{L^{2}(\Omega)}\|\psi(0)\|_{L^{2}(\Omega)}$.

- And $\|\psi(0)\|_{L^{2}(\Omega)} \leq C(\underline{d}, \bar{d}, T)\|\Theta\|_{L^{2}\left(Q_{T}\right)}$, whence the L^{2}-estimate on W by duality.

A proof of the L^{2}-estimate by duality

- We multiply the inequality $\partial_{t} W-\Delta(a W) \leq 0$, by the solution $\psi \geq 0$ of the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+a \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right)^{+} \\
\psi(T)=0, \partial_{\nu} \psi=0
\end{array}\right.
$$

$\Rightarrow \Rightarrow \int_{Q_{T}} W \Theta=\int_{\Omega} W_{0} \psi(0) \leq\left\|W_{0}\right\|_{L^{2}(\Omega)}\|\psi(0)\|_{L^{2}(\Omega)}$.

- And $\|\psi(0)\|_{L^{2}(\Omega)} \leq C(\underline{d}, \bar{d}, T)\|\Theta\|_{L^{2}\left(Q_{T}\right)}$, whence the L^{2}-estimate on W by duality.
- Indeed multiplying the equation in ψ by $-\Delta \psi$ gives

$$
\int_{Q_{T}}(\Delta \psi) \partial_{t} \psi+a(\Delta \psi)^{2}=-\int_{Q_{T}} \Delta \psi \Theta .
$$

A proof of the L^{2}-estimate by duality

- We multiply the inequality $\partial_{t} W-\Delta(a W) \leq 0$, by the solution $\psi \geq 0$ of the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+a \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right)^{+} \\
\psi(T)=0, \partial_{\nu} \psi=0
\end{array}\right.
$$

$\triangleright \Rightarrow \int_{Q_{T}} W \Theta=\int_{\Omega} W_{0} \psi(0) \leq\left\|W_{0}\right\|_{L^{2}(\Omega)}\|\psi(0)\|_{L^{2}(\Omega)}$.

- And $\|\psi(0)\|_{L^{2}(\Omega)} \leq C(\underline{d}, \bar{d}, T)\|\Theta\|_{L^{2}\left(Q_{T}\right)}$, whence the L^{2}-estimate on W by duality.
- Indeed multiplying the equation in ψ by $-\Delta \psi$ gives $\int_{Q_{T}}(\Delta \psi) \partial_{t} \psi+a(\Delta \psi)^{2}=-\int_{Q_{T}} \Delta \psi \Theta$.
$-\int_{Q_{T}}(\Delta \psi) \partial_{t} \psi=-\int_{Q_{T}} \nabla \psi \partial_{t} \nabla \psi=-\frac{1}{2} \int_{Q_{T}} \partial_{t}|\nabla \psi|^{2}=\frac{1}{2} \int_{\Omega}|\nabla \psi(0)|^{2} \geq 0$.

A proof of the L^{2}-estimate by duality

- We multiply the inequality $\partial_{t} W-\Delta(a W) \leq 0$, by the solution $\psi \geq 0$ of the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+a \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right)^{+} \\
\psi(T)=0, \partial_{\nu} \psi=0
\end{array}\right.
$$

$\triangleright \Rightarrow \int_{Q_{T}} W \Theta=\int_{\Omega} W_{0} \psi(0) \leq\left\|W_{0}\right\|_{L^{2}(\Omega)}\|\psi(0)\|_{L^{2}(\Omega)}$.

- And $\|\psi(0)\|_{L^{2}(\Omega)} \leq C(\underline{d}, \bar{d}, T)\|\Theta\|_{L^{2}\left(Q_{T}\right)}$, whence the L^{2}-estimate on W by duality.
- Indeed multiplying the equation in ψ by $-\Delta \psi$ gives $\int_{Q_{T}}(\Delta \psi) \partial_{t} \psi+a(\Delta \psi)^{2}=-\int_{Q_{T}} \Delta \psi \Theta$.
$-\int_{Q_{T}}(\Delta \psi) \partial_{t} \psi=-\int_{Q_{T}} \nabla \psi \partial_{t} \nabla \psi=-\frac{1}{2} \int_{Q_{T}} \partial_{t}|\nabla \psi|^{2}=\frac{1}{2} \int_{\Omega}|\nabla \psi(0)|^{2} \geq 0$.
$-\Rightarrow \underline{d}\|\Delta \psi\|_{L^{2}\left(Q_{T}\right)}^{2} \leq\|\Delta \psi\|_{L^{2}\left(Q_{T}\right)}\|\Theta\|_{L^{2}\left(Q_{T}\right)}$.

A proof of the L^{2}-estimate by duality

- We multiply the inequality $\partial_{t} W-\Delta(a W) \leq 0$, by the solution $\psi \geq 0$ of the dual problem

$$
\left\{\begin{array}{l}
-\left(\partial_{t} \psi+a \Delta \psi\right)=\Theta \in C_{0}^{\infty}\left(Q_{T}\right)^{+} \\
\psi(T)=0, \partial_{\nu} \psi=0
\end{array}\right.
$$

$\triangleright \Rightarrow \int_{Q_{T}} W \Theta=\int_{\Omega} W_{0} \psi(0) \leq\left\|W_{0}\right\|_{L^{2}(\Omega)}\|\psi(0)\|_{L^{2}(\Omega)}$.

- And $\|\psi(0)\|_{L^{2}(\Omega)} \leq C(\underline{d}, \bar{d}, T)\|\Theta\|_{L^{2}\left(Q_{T}\right)}$, whence the L^{2}-estimate on W by duality.
- Indeed multiplying the equation in ψ by $-\Delta \psi$ gives $\int_{Q_{T}}(\Delta \psi) \partial_{t} \psi+a(\Delta \psi)^{2}=-\int_{Q_{T}} \Delta \psi \Theta$.
$-\int_{Q_{T}}(\Delta \psi) \partial_{t} \psi=-\int_{Q_{T}} \nabla \psi \partial_{t} \nabla \psi=-\frac{1}{2} \int_{Q_{T}} \partial_{t}|\nabla \psi|^{2}=\frac{1}{2} \int_{\Omega}|\nabla \psi(0)|^{2} \geq 0$.
$\Rightarrow \Rightarrow \underline{d}\|\Delta \psi\|_{L^{2}\left(Q_{T}\right)}^{2} \leq\|\Delta \psi\|_{L^{2}\left(Q_{T}\right)}\|\Theta\|_{L^{2}\left(Q_{T}\right)}$.
- This implies an $L^{2}\left(Q_{T}\right)$-estimate on $\Delta \psi$, then on $\partial_{t} \psi$ and then the $L^{2}(\Omega)$-estimate on $\psi(0)$.

Extensions of the L^{2}-estimate for such systems

- This L^{2}-estimate is robust !

Extensions of the L^{2}-estimate for such systems

- This L^{2}-estimate is robust !
- Variable coefficients $d_{i}=d_{i}(t, x)$, nonlinear diffusions $-\Delta d_{i}\left(u_{i}\right)$
- $W_{0} \in L^{1}(\Omega)$ only !: The L^{2}-estimate may be localized for $\partial_{t} W-\Delta(a W) \leq 0, \underline{d} \leq a \leq \bar{d}$.

$$
\|W\|_{L^{2}((\tau, T) \times \Omega)} \leq \frac{C(\underline{d}, \bar{d}, T)}{\tau^{N / 4}}\left\|W_{0}\right\|_{L^{1}(\Omega)}
$$

- [J.A. Cañizo, L. Desvillettes, K. Fellner]: there exists $\epsilon(N)>0$ such that

$$
\|W\|_{L^{2+\epsilon}\left(Q_{T}\right)} \leq C\left\|W_{0}\right\|_{L^{2+\epsilon}(\Omega)}
$$

Applications to quadratic systems

$$
(S) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0, u^{0} \in L^{2}(\Omega)^{m} . & \end{cases}
$$

- Corollary of the L^{1} and L^{2} Theorems. Assume ($\left.\mathbf{P}\right)+\left(\mathrm{M}^{\prime}\right)$ and the f_{i} are at most quadratic, i.e.

$$
\forall 1 \leq i \leq m, \quad \forall r \in[0, \infty)^{2},\left|f_{i}(r)\right| \leq C\left[1+\sum r_{j}^{2}\right] .
$$

Then, (S) has a global weak solution.

Applications to quadratic systems

$$
\text { (S) } \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0, u^{0} \in L^{2}(\Omega)^{m} . & \end{cases}
$$

- Corollary of the L^{1} and L^{2} Theorems. Assume ($\left.\mathbf{P}\right)+\left(\mathbf{M}^{\prime}\right)$ and the f_{i} are at most quadratic, i.e.

$$
\forall 1 \leq i \leq m, \quad \forall r \in[0, \infty)^{2},\left|f_{i}(r)\right| \leq C\left[1+\sum r_{j}^{2}\right]
$$

Then, (S) has a global weak solution.

- Proof. By L^{2}-estimate + at most quadratic growth of f_{i}, we have the a priori estimate for the solutions of (S)

$$
\forall 1 \leq i \leq m, \quad \int_{Q_{T}}\left|f_{i}(u)\right| \leq C(T)
$$

Then, we apply the L^{1}-theorem.

Applications to quadratic systems

$$
\text { (S) } \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{T} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{T} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0, u^{0} \in L^{2}(\Omega)^{m} . & \end{cases}
$$

- Corollary of the L^{1} and L^{2} Theorems. Assume ($\left.\mathbf{P}\right)+\left(\mathbf{M}^{\prime}\right)$ and the f_{i} are at most quadratic, i.e.

$$
\forall 1 \leq i \leq m, \quad \forall r \in[0, \infty)^{2},\left|f_{i}(r)\right| \leq C\left[1+\sum r_{j}^{2}\right]
$$

Then, (S) has a global weak solution.

- Proof. By L^{2}-estimate + at most quadratic growth of f_{i}, we have the a priori estimate for the solutions of (S)

$$
\forall 1 \leq i \leq m, \quad \int_{Q_{T}}\left|f_{i}(u)\right| \leq C(T)
$$

Then, we apply the L^{1}-theorem.

- But quite more has recently be proved!

A recent main result for systems with quadratic growth

$$
\left(S_{\infty}\right) \begin{cases}\forall i=1, \ldots, m \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{\infty} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{\infty} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \in L^{\infty}(\Omega)^{+}\end{cases}
$$

- Assume f satisfies ($\mathbf{P} \mathbf{)}+\mathbf{(M} \mathbf{\prime})$ and $\forall i=1, \ldots, m$

$$
\left|f_{i}(r)\right| \leq K\left[1+\left|\sum_{i} r_{i}\right|^{2+\epsilon}\right], \forall r=\left(r_{1}, \ldots, r_{m}\right) \in[0,+\infty)^{m} .
$$

A recent main result for systems with quadratic growth

$$
\left(S_{\infty}\right) \begin{cases}\forall i=1, \ldots, m \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{\infty} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{\infty} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \in L^{\infty}(\Omega)^{+}\end{cases}
$$

- Assume f satisfies ($\mathbf{P} \mathbf{)}+(\mathbf{M} \mathbf{\prime})$ and $\forall i=1, \ldots, m$

$$
\left|f_{i}(r)\right| \leq K\left[1+\left|\sum_{i} r_{i}\right|^{2+\epsilon}\right], \forall r=\left(r_{1}, \ldots, r_{m}\right) \in[0,+\infty)^{m} .
$$

- Then if ϵ is small enough, there exists a global classical solution to S_{∞}.

A recent main result for systems with quadratic growth

$$
\left(S_{\infty}\right) \begin{cases}\forall i=1, \ldots, m & \text { in } Q_{\infty}, \\ \partial_{2} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { on } \Sigma_{\infty}, \\ \partial_{\nu} u_{i}=0 \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \in L^{\infty}(\Omega)^{+} . & \end{cases}
$$

- Assume f satisfies ($\mathbf{P} \mathbf{)}+(\mathbf{M} \mathbf{\prime})$ and $\forall i=1, \ldots, m$

$$
\left|f_{i}(r)\right| \leq K\left[1+\left|\sum_{i} r_{i}\right|^{2+\epsilon}\right], \forall r=\left(r_{1}, \ldots, r_{m}\right) \in[0,+\infty)^{m} .
$$

- Then if ϵ is small enough, there exists a global classical solution to S_{∞}.
- To be compared with the blow up examples...: ϵ being given, one can construct solutions which blow up in $L^{\infty}(\Omega)$ in finite time, but the dimension has to be chosen large enough. ($\epsilon=\epsilon(N)$ above $)$.

A recent main result for systems with quadratic growth

$$
\left(S_{\infty}\right) \begin{cases}\forall i=1, \ldots, m \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{\infty}, \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{\infty}, \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \in L^{\infty}(\Omega)^{+} .\end{cases}
$$

- Assume f satisfies ($\mathbf{P} \mathbf{)}+(\mathbf{M} \mathbf{\prime})$ and $\forall i=1, \ldots, m$

$$
\left|f_{i}(r)\right| \leq K\left[1+\left|\sum_{i} r_{i}\right|^{2+\epsilon}\right], \forall r=\left(r_{1}, \ldots, r_{m}\right) \in[0,+\infty)^{m} .
$$

- Then if ϵ is small enough, there exists a global classical solution to S_{∞}.
- To be compared with the blow up examples...: ϵ being given, one can construct solutions which blow up in $L^{\infty}(\Omega)$ in finite time, but the dimension has to be chosen large enough. ($\epsilon=\epsilon(N)$ above).
- Includes the famous Lotka-Volterra system in any dimension!.

A recent main result for systems with quadratic growth

$$
\left(S_{\infty}\right) \begin{cases}\forall i=1, \ldots, m \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{\infty}, \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{\infty}, \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \in L^{\infty}(\Omega)^{+} .\end{cases}
$$

- Assume f satisfies ($\mathbf{P} \mathbf{)}+(\mathbf{M} \mathbf{\prime})$ and $\forall i=1, \ldots, m$

$$
\left|f_{i}(r)\right| \leq K\left[1+\left|\sum_{i} r_{i}\right|^{2+\epsilon}\right], \forall r=\left(r_{1}, \ldots, r_{m}\right) \in[0,+\infty)^{m}
$$

- Then if ϵ is small enough, there exists a global classical solution to S_{∞}.
- To be compared with the blow up examples...: ϵ being given, one can construct solutions which blow up in $L^{\infty}(\Omega)$ in finite time, but the dimension has to be chosen large enough. ($\epsilon=\epsilon(N)$ above).
- Includes the famous Lotka-Volterra system in any dimension!.
- Includes: $U_{1}+U_{3} \underset{k^{-}}{\stackrel{k^{+}}{\rightleftharpoons}} U_{2}+U_{4}$

A recent main result for systems with quadratic growth

$$
\left(S_{\infty}\right) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{\infty} \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{\infty} \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0\end{cases}
$$

- The above quadratic result is due to K.Fellner, J. Morgan and B. Q. Tang (in 2 papers 2020 and 2021).

A recent main result for systems with quadratic growth

$$
\left(S_{\infty}\right) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{\infty}, \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{\infty}, \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- The above quadratic result is due to K.Fellner, J. Morgan and B. Q. Tang (in 2 papers 2020 and 2021).
- It relies in particular on a technique developed by Ya.I. Kanel (1990) where such a global existence result was proved in \boldsymbol{R}^{N} and for equality in (M).

A recent main result for systems with quadratic growth

$$
\left(S_{\infty}\right) \begin{cases}\forall i=1, \ldots, m & \\ \partial_{t} u_{i}-d_{i} \Delta u_{i}=f_{i}\left(u_{1}, u_{2}, \ldots, u_{m}\right) & \text { in } Q_{\infty}, \\ \partial_{\nu} u_{i}=0 & \text { on } \Sigma_{\infty}, \\ u_{i}(0, \cdot)=u_{i}^{0}(\cdot) \geq 0 . & \end{cases}
$$

- The above quadratic result is due to K.Fellner, J. Morgan and B. Q. Tang (in 2 papers 2020 and 2021).
- It relies in particular on a technique developed by Ya.I. Kanel (1990) where such a global existence result was proved in \boldsymbol{R}^{N} and for equality in (M).
- And similar global existence results were also obtained in 2018 by Ph. Souplet and in 2019 by M.C. Caputo, Th. Goudon and A. Vasseur assuming an entropy dissipation (as for reversible chemistry)).

Ingredients of the proof of the quadratic theorem

－A surprising interpolation lemma whose idea is taken from Ya． Kanel in \boldsymbol{R}^{N} and adapted by K．Fellner，J．Morgan and B．Q．Tang to the case of a bounded regular domain with homogeneous Neumann boundary conditions（it would also work with Dirichlet boundary conditions）

Ingredients of the proof of the quadratic theorem

- A surprising interpolation lemma whose idea is taken from Ya. Kanel in \boldsymbol{R}^{N} and adapted by K. Fellner, J. Morgan and B.Q. Tang to the case of a bounded regular domain with homogeneous Neumann boundary conditions (it would also work with Dirichlet boundary conditions)
- Let w be the solution of the heat equation

$$
\left\{\begin{array}{l}
\partial_{t} w-d \Delta w=\Theta \text { in } Q_{T} \\
\partial_{\nu} w=0 \text { on } \Sigma_{T}, \quad w(0)=w_{0} \\
\Theta \in L^{\infty}\left(Q_{T}\right), d \in(0,+\infty)
\end{array}\right.
$$

Ingredients of the proof of the quadratic theorem

- A surprising interpolation lemma whose idea is taken from Ya. Kanel in \boldsymbol{R}^{N} and adapted by K. Fellner, J. Morgan and B.Q. Tang to the case of a bounded regular domain with homogeneous Neumann boundary conditions (it would also work with Dirichlet boundary conditions)
- Let w be the solution of the heat equation

$$
\left\{\begin{array}{l}
\partial_{t} w-d \Delta w=\Theta \text { in } Q_{T} \\
\partial_{\nu} w=0 \text { on } \Sigma_{T}, \quad w(0)=w_{0} \\
\Theta \in L^{\infty}\left(Q_{T}\right), d \in(0,+\infty)
\end{array}\right.
$$

- Assume that for some $H \in(0,+\infty), \gamma \in[0,1)$

$$
|w(t, x)-w(t, y)| \leq H|x-y|^{\gamma}, \quad \forall t \in(0, T), x, y \in \Omega
$$

Ingredients of the proof of the quadratic theorem

- A surprising interpolation lemma whose idea is taken from Ya. Kanel in \boldsymbol{R}^{N} and adapted by K. Fellner, J. Morgan and B.Q. Tang to the case of a bounded regular domain with homogeneous Neumann boundary conditions (it would also work with Dirichlet boundary conditions)
- Let w be the solution of the heat equation

$$
\left\{\begin{array}{l}
\partial_{t} w-d \Delta w=\Theta \text { in } Q_{T} \\
\partial_{\nu} w=0 \text { on } \Sigma_{T}, \quad w(0)=w_{0} \\
\Theta \in L^{\infty}\left(Q_{T}\right), d \in(0,+\infty)
\end{array}\right.
$$

- Assume that for some $H \in(0,+\infty), \gamma \in[0,1)$

$$
|w(t, x)-w(t, y)| \leq H|x-y|^{\gamma}, \quad \forall t \in(0, T), x, y \in \Omega
$$

- Then there exists $B, C \in(0,+\infty)$ such that, for all $t \in[0, T]$

$$
(\gamma \text {-Lemma })\|\nabla w(t)\|_{L^{\infty}(\Omega)^{N}} \leq C\left\|\nabla w_{0}\right\|_{L^{\infty}(\Omega)^{N}}+B H^{\frac{1}{2-\gamma}}\|\Theta\|_{L^{\infty}\left(Q_{T}\right)}^{\frac{1-\gamma}{2-\gamma}} .
$$

Ingredients of the proof of the quadratic theorem

- A surprising interpolation lemma whose idea is taken from Ya. Kanel in \boldsymbol{R}^{N} and adapted by K. Fellner, J. Morgan and B.Q. Tang to the case of a bounded regular domain with homogeneous Neumann boundary conditions (it would also work with Dirichlet boundary conditions)
- Let w be the solution of the heat equation

$$
\left\{\begin{array}{l}
\partial_{t} w-d \Delta w=\Theta \text { in } Q_{T} \\
\partial_{\nu} w=0 \text { on } \Sigma_{T}, \quad w(0)=w_{0} \\
\Theta \in L^{\infty}\left(Q_{T}\right), d \in(0,+\infty)
\end{array}\right.
$$

- Assume that for some $H \in(0,+\infty), \gamma \in[0,1)$

$$
|w(t, x)-w(t, y)| \leq H|x-y|^{\gamma}, \quad \forall t \in(0, T), x, y \in \Omega
$$

- Then there exists $B, C \in(0,+\infty)$ such that, for all $t \in[0, T]$

$$
(\gamma \text {-Lemma })\|\nabla w(t)\|_{L^{\infty}(\Omega)^{N}} \leq C\left\|\nabla w_{0}\right\|_{L^{\infty}(\Omega)^{N}}+B H^{\frac{1}{2-\gamma}}\|\Theta\|_{L^{\infty}\left(Q_{T}\right)}^{\frac{1-\gamma}{2-\gamma}} .
$$

$-\gamma=0:\|\nabla w(t)\|_{L^{\infty}(\Omega)^{N}} \leq C\left\|\nabla w_{0}\right\|_{L^{\infty}(\Omega)^{N}}+B H^{\frac{1}{2}}\|\Theta\|_{L^{\infty}}^{\frac{1}{2}}, H=2\|w\|_{L^{\infty}}$

Ideas of the proof of the quadratic theorem: case
$\sum_{i} f_{i}(u)=0$

- We apply this γ-lemma to $V:=\int_{0}^{t} \sum_{i} d_{i} u_{i}$

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

- We apply this γ-lemma to $V:=\int_{0}^{t} \sum_{i} d_{i} u_{i}$
- Rewrite $\partial_{t} \sum_{i} u_{i}-\Delta\left(\sum_{i} d_{i} u_{i}\right)=0$ in several ways:

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

- We apply this γ-lemma to $V:=\int_{0}^{t} \sum_{i} d_{i} u_{i}$
- Rewrite $\partial_{t} \sum_{i} u_{i}-\Delta\left(\sum_{i} d_{i} u_{i}\right)=0$ in several ways:

$$
\left(\mathrm{V}_{1}\right) \quad \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0}
$$

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

- We apply this γ-lemma to $V:=\int_{0}^{t} \sum_{i} d_{i} u_{i}$
- Rewrite $\partial_{t} \sum_{i} u_{i}-\Delta\left(\sum_{i} d_{i} u_{i}\right)=0$ in several ways:

$$
\left(\mathrm{V}_{1}\right) \quad \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0}
$$

$\left(\mathrm{V}_{2}\right) \quad \partial_{t} V-\Delta V=\sum_{i}\left(d_{i}-1\right) u_{i}+\sum_{i} u_{i}^{0}$.

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

- We apply this γ-lemma to $V:=\int_{0}^{t} \sum_{i} d_{i} u_{i}$
- Rewrite $\partial_{t} \sum_{i} u_{i}-\Delta\left(\sum_{i} d_{i} u_{i}\right)=0$ in several ways:

$$
\begin{gathered}
\left(\mathrm{V}_{1}\right) \quad \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0} \\
\left(\mathrm{~V}_{2}\right) \quad \partial_{t} V-\Delta V=\sum_{i}\left(d_{i}-1\right) u_{i}+\sum_{i} u_{i}^{0} \\
\left(\mathrm{~V}_{3}\right) \quad \frac{1}{a} \partial_{t} V-\Delta V=\sum_{i} u_{i}^{0}
\end{gathered}
$$

where $a=\frac{\sum_{i} d_{i} u_{i}}{\sum_{i} u_{i}}, \underline{d} \leq a \leq \bar{d}$.

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

$$
\begin{aligned}
& \left(\mathrm{V}_{1}\right) \quad \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0} . \\
& \left(V_{2}\right) \\
& \left(V_{3}\right) \\
& \frac{1}{2} \partial_{t} V-\Delta V=\sum_{i}\left(d_{i}-1\right) u_{i}+\sum_{i} u_{i}^{0} . \\
& .
\end{aligned}
$$

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

$$
\begin{aligned}
& \left(\mathrm{V}_{1}\right) \quad \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0} . \\
& \left(V_{2}\right) \\
& \left(V_{3}\right) \\
& \frac{1}{\partial} \partial_{t} V-\Delta V=\sum_{i}\left(d_{i}-1\right) u_{i}+\sum_{i} u_{i}^{0} . \\
& .
\end{aligned}
$$

- By $\left(\mathrm{V}_{1}\right)$, if we bound $\|\Delta V\|_{L^{\infty}\left(Q_{T^{*}}\right)} \Rightarrow$ global existence !

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

$$
\begin{array}{ll}
\left(V_{1}\right) & \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0} . \\
\left(V_{2}\right) & \partial_{t} V-\Delta V=\sum_{i}\left(d_{i}-1\right) u_{i}+\sum_{i} u_{i}^{0} . \\
\left(V_{3}\right) & \frac{1}{a} \partial_{t} V-\Delta V=\sum_{i} u_{i}^{0} .
\end{array}
$$

- By $\left(\mathrm{V}_{1}\right)$, if we bound $\|\Delta V\|_{L^{\infty}\left(Q_{T^{*}}\right)} \Rightarrow$ global existence !
- By applying the Krylov-Safanov estimates to $\left(\mathrm{V}_{3}\right)$, we obtain a uniform Hölder-estimate for V on $Q_{T^{*}}$ (depending on $\left.\underline{d}, \bar{d}\right)$.

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

$$
\begin{aligned}
& \left(V_{1}\right) \quad \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0} . \\
& \left(V_{2}\right) \\
& \left(V_{3}\right) \\
& \frac{1}{2} \partial_{t} V-\Delta V=\sum_{i}\left(d_{i}-1\right) u_{i}+\sum_{i} u_{i}^{0} . \\
& .
\end{aligned}
$$

- By $\left(\mathrm{V}_{1}\right)$, if we bound $\|\Delta V\|_{L^{\infty}\left(Q_{T^{*}}\right)} \Rightarrow$ global existence !
- By applying the Krylov-Safanov estimates to $\left(\mathrm{V}_{3}\right)$, we obtain a uniform Hölder-estimate for V on $Q_{T^{*}}$ (depending on $\left.\underline{d}, \bar{d}\right)$.
- Apply the γ-lemma to V in $\left(\mathrm{V}_{2}\right)$!!!!

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

$$
\begin{array}{ll}
\left(V_{1}\right) & \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0} . \\
\left(V_{2}\right) & \partial_{t} V-\Delta V=\sum_{i}\left(d_{i}-1\right) u_{i}+\sum_{i} u_{i}^{0} . \\
\left(V_{3}\right) & \frac{1}{a} \partial_{t} V-\Delta V=\sum_{i} u_{i}^{0} .
\end{array}
$$

- By $\left(\mathrm{V}_{1}\right)$, if we bound $\|\Delta V\|_{L^{\infty}\left(Q_{T^{*}}\right)} \Rightarrow$ global existence !
- By applying the Krylov-Safanov estimates to $\left(\mathrm{V}_{3}\right)$, we obtain a uniform Hölder-estimate for V on $Q_{T^{*}}$ (depending on $\left.\underline{d}, \bar{d}\right)$.
- Apply the γ-lemma to V in $\left(\mathrm{V}_{2}\right)$!!!!
- + some other more classical interpolation lemma for $\left(\mathrm{V}_{2}\right)$ and for the equations in u_{i}

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

$$
\begin{aligned}
& \left(V_{1}\right) \quad \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0} \\
& \left(V_{2}\right) \partial_{i} t-\Delta V=\sum_{i}\left(d_{i}-1\right) u_{i}+\sum_{i} u_{i}^{0} . \\
& \left(V_{3}\right) \frac{1}{2} \partial_{t} V-\Delta V=\sum_{i} u_{i}^{0} .
\end{aligned}
$$

- By $\left(\mathrm{V}_{1}\right)$, if we bound $\|\Delta V\|_{L^{\infty}\left(Q_{T^{*}}\right)} \Rightarrow$ global existence !
- By applying the Krylov-Safanov estimates to $\left(\mathrm{V}_{3}\right)$, we obtain a uniform Hölder-estimate for V on $Q_{T^{*}}$ (depending on $\left.\underline{d}, \bar{d}\right)$.
- Apply the γ-lemma to V in $\left(\mathrm{V}_{2}\right)$!!!!
- + some other more classical interpolation lemma for $\left(\mathrm{V}_{2}\right)$ and for the equations in u_{i}
- + use the assumption of quadratic growth of the f_{i}.

Ideas of the proof of the quadratic theorem: case $\sum_{i} f_{i}(u)=0$

$$
\begin{aligned}
& \left(V_{1}\right) \quad \sum_{i} u_{i}(t)-\Delta V=\sum_{i} u_{i}^{0} \\
& \left(V_{2}\right) \partial_{i} t-\Delta V=\sum_{i}\left(d_{i}-1\right) u_{i}+\sum_{i} u_{i}^{0} . \\
& \left(V_{3}\right) \frac{1}{2} \partial_{t} V-\Delta V=\sum_{i} u_{i}^{0} .
\end{aligned}
$$

- By $\left(\mathrm{V}_{1}\right)$, if we bound $\|\Delta V\|_{L^{\infty}\left(Q_{T^{*}}\right)} \Rightarrow$ global existence !
- By applying the Krylov-Safanov estimates to $\left(\mathrm{V}_{3}\right)$, we obtain a uniform Hölder-estimate for V on $Q_{T^{*}}$ (depending on $\left.\underline{d}, \bar{d}\right)$.
- Apply the γ-lemma to V in $\left(\mathrm{V}_{2}\right)$!!!!
- + some other more classical interpolation lemma for $\left(\mathrm{V}_{2}\right)$ and for the equations in u_{i}
- + use the assumption of quadratic growth of the f_{i}.
- and it works...

Application to the Lotka-Volterra system

- Applies to the (quadratic) Lotka-Volterra system: for all $u^{0} \in L^{\infty}(\Omega)^{+m}$, there exists a global classical solution to the system: For all $i=1, \ldots, m$,

$$
\partial_{t} u_{i}-d_{i} \Delta u_{i}=e_{i} u_{i}+\left(\sum_{1 \leq j \leq m} p_{i j} u_{j}\right) u_{i}=: f_{i}(u),
$$

where $e_{i} \in \boldsymbol{R}, p_{i j} \in \boldsymbol{R}+$ "Dissipation".

Application to the Lotka-Volterra system

- Applies to the (quadratic) Lotka-Volterra system: for all $u^{0} \in L^{\infty}(\Omega)^{+m}$, there exists a global classical solution to the system: For all $i=1, \ldots, m$,

$$
\partial_{t} u_{i}-d_{i} \Delta u_{i}=e_{i} u_{i}+\left(\sum_{1 \leq j \leq m} p_{i j} u_{j}\right) u_{i}=: f_{i}(u),
$$

where $e_{i} \in \boldsymbol{R}, p_{i j} \in \boldsymbol{R}+$ "Dissipation".

- "Dissipation": we assume that, for some $\left(a_{i}\right) \in(0,+\infty)^{m}$

$$
\begin{gathered}
\forall \xi \in[0, \infty)^{m}, \quad \sum_{i, j=1}^{m} a_{i} p_{i j} \xi_{i} \xi_{j} \leq 0 \\
\Rightarrow \quad \sum_{i} a_{i} f_{i}(u) \leq \sum_{i} a_{i} e_{i} u_{i} \quad\left(\text { whence }\left(\mathbf{M}^{\prime}\right)\right)
\end{gathered}
$$

