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In classical mechanics

Dissipation with p > 0 of an ODE : for all t > 0,

E(t) —i—,u/o P\(/slds = E(0).
>0

Dissipation in quantum mechanics Some recalls on classical mechanics Journée Ananum 3 /31



In classical mechanics

Dissipation with p > 0 of an ODE : for all t > 0,

t
E(t)+ u/ D(s) ds = E(0).
0~~~
>0
Example : the damped harmonic oscillator
X+ puX 4+ w?X =0,

with dissipated energy

1. 5 w2 2 L 2

SX(WP+ X0 4 | X(s)ds = E(0).
—_—— — \O—V—’

=Eyin(t) =Epot(t)

=2 f(; Ekin (s)ds
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Damping in quantum mechanics
Consider (NLS) equation

i0ph + A + [Py =0

with usual invariants for all t > 0,

M(t) = [ (t, )l 2wey = M(0),

=5 [ver—g [t
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Damping in quantum mechanics
Consider (NLS) equation

i0e) + A + > = 0
with usual invariants for all t > 0,

M(t) = llo(t, )l zrey = M(0),

B =3 [ 1P~ [ it = EC)

Typical damping in the mathematical literature (blow-up criterion Fibich
2001, control theory) :

i0e) + A + [P0 + ipp = 0,

with > 0. No mass-conservation property :

[9(t, )l 2rey = e lltboll 2(ra)-
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Schrédinger-Langevin Equation

Kostin 1972 derived a nonlinear Schrdodinger equation

10 + A = %1/} log (%)

which formally preserves mass.
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Schrédinger-Langevin Equation

Kostin 1972 derived a nonlinear Schrdodinger equation
16) A I v
i0p) + Ayp = *1/1 o8 | U

which formally preserves mass.

Few mathematical investigation :

@ ill-posedness when 1) tends to 0,

o multivaluation of the argument v = |¢)|e/® with

0= ! IOg (:Zi) .

Lopez & Montejo-Gamez 2011 : local existence of strong solutions away
from zero in a bouded domain.
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Logarithmic Schrodinger equation
Biatynicki-Birula & Mycielski 1976 introduced (logNLS) :

IO + A = X log |92, (logNLS)

with A € R*,
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Logarithmic Schrodinger equation
Biatynicki-Birula & Mycielski 1976 introduced (logNLS) :

IO + A = X log |92, (logNLS)

with A € R*,

@ Derived in quantum optics (Buljan & al 2003), nuclear physics (Hefter
1985), diffusion phenomena (de Martino & al 2007).
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Logarithmic Schrodinger equation
Biatynicki-Birula & Mycielski 1976 introduced (logNLS) :

IO + DAp = Mplog |92, (logNLS)

with A € R*.

@ Derived in quantum optics (Buljan & al 2003), nuclear physics (Hefter
1985), diffusion phenomena (de Martino & al 2007).

@ Mass and energy
M) = 6] ap0
2
H) = IVl +A [ 10P(og 0P ~ 1x.
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Logarithmic Schrodinger equation
Biatynicki-Birula & Mycielski 1976 introduced (logNLS) :

IO + DAp = Mplog |92, (logNLS)

with A € R*.

@ Derived in quantum optics (Buljan & al 2003), nuclear physics (Hefter
1985), diffusion phenomena (de Martino & al 2007).

@ Mass and energy
M) = 1l e
2
H) = IVl +A [ 10P(og 0P ~ 1x.
e Gaussian solutions :

» )\ > 0 : dispersion at rate (t\/logt)~9/2,
» )\ < 0 : existence of stationary solutions called Gaussons.
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Logarithmic Schrodinger equation

i0ep + Arp = A log [1)]?

e Focusing case (A > 0)

» Cauchy Problem : Cazenave & Haraux 1980, Cazenave 2003. Global
existence in the energy space

W= {v € H'(R?) | x = [9(x)? log [(x)|” € L'(RY)} .

» Orbital stability of the Gausson (Cazenave 1983, Ardila 2016),
existence of multi-Gaussons (Ferriere 2021).
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Logarithmic Schrodinger equation

i0ep + Arp = A log [1)]?

e Focusing case (A > 0)

» Cauchy Problem : Cazenave & Haraux 1980, Cazenave 2003. Global
existence in the energy space

W= {p e H'(R?) | x = [¥(x) log[e:(x)]* € L'(R)} .

» Orbital stability of the Gausson (Cazenave 1983, Ardila 2016),
existence of multi-Gaussons (Ferriere 2021).

e Defocusing case (A > 0)

» Global existence in the weighted Sobolev space H(R?) N F(H*)
(Guerrero, Lépez & Nieto 2010, Carles & Gallagher 2018).
» Uniform behavior of solutions (Carles & Gallagher 2018) and universal

dispersion at a scale (ty/Tog t)~9/2.
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Schrédinger-Langevin equation

Nassar 1985 introduced (SL) :

i9eb + Ap = M log [[2 + %zp log (%)
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Schrédinger-Langevin equation

Nassar 1985 introduced (SL) :

i9eb + Ap = M log [[2 + %w log (%)

@ Quantum mechanics, cosmology, statistical mechanics : Zander & al.
2015, Mousavi & al. 2019, Chavanis 2017.
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Schrédinger-Langevin equation

Nassar 1985 introduced (SL) :

i0ep + Aip = \ip log |1)]? + %w log (5)

@ Quantum mechanics, cosmology, statistical mechanics : Zander & al.
2015, Mousavi & al. 2019, Chavanis 2017.

o Fluid formulation with Madelung transform ¢ = ,/pe”® and u = VS :
isothermal Euler-Korteweg system with damping

Orp + div(pu) =0,
Vs

1
Ot(pu) + div (pu ®@ u —I—)\Vp—l—upu:pv<>.

Dissipation in quantum mechanics Schrédinger-Langevin equation Journée Ananum 8 /31



Schrédinger-Langevin equation

i0p) 4+ A = \ip log [¢|* + %¢ log (%) (SL)

Analysis on R?

e Mass conservation ||p(t,-)||;1 = ||pol|;2 and energy dissipation :

1 t
5 [ ol [ (9VER+ Mollogp~ 1) 4u [ [ pluPas < B
Rd Rd 0 Rd

:Ekin(t) :Epot(t) =2 fot Ekin(s)ds
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Schrédinger-Langevin equation

i0ct) + Dy = A log [y + Lo log (;b) (SL)
Analysis on R?
e Mass conservation ||p(t,-)||;1 = ||pol|;2 and energy dissipation :

1 t
5 [ ol [ (9VER+ Mollogp~ 1) 4u [ [ pluPas < B
Rd Rd 0 Rd

:Ekiu(t) :Epot(t) =2 fot Ekin(s)ds

@ Gaussian particular solutions.
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Schrédinger-Langevin equation

i0ct) + Dy = A log [y + Lo log (;b) (SL)
Analysis on R?
e Mass conservation ||p(t,-)||;1 = ||pol|;2 and energy dissipation :

1 t
5 [ ol [ (9VER+ Mollogp~ 1) 4u [ [ pluPas < B
Rd Rd 0 Rd

:Ekiu(t) :Epot(t) =2 fot Ekin(s)ds

@ Gaussian particular solutions.
e Dynamics (C. 2021) :
» A > 0 : Universal dispersion in t=9/4 slowlier than the linear and

logarithmic one.
» A < 0: Convergence towards the Gausson e

Alx|?
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Equation on T¢

et + Ap = N log 12 + T4/ log (

)
’l/)*

o = = E A
Plane waves stability on T'



Equation on T¢
. _ 2, M (0
10 + Ay = M) log |[¥]° + Ez{} log (E) (SL)

o Global existence on H! (compactness) when 1 = 0.
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Equation on T¢

i9eb + Db = A log |2 + %w log (wi) (SL)

o Global existence on H! (compactness) when 1 = 0.

@ No Gaussian calculus.
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Equation on T¢

i9eb + Db = A log |2 + %u} log (:f) (SL)

o Global existence on H! (compactness) when 1 = 0.
e No Gaussian calculus.

e For initial data made of a single Fourier mode u(0, x) = pe™* (with
p >0 and m € Z9), (logNLS) has the unique plane-wave solution

i(m-x—wt)

Um(t, x) = pe

with w = |m|? 4+ 2\ log p, and the only stationary plane wave solutions
of (SL) are the constant plane wave functions of the form

U= pef2i)\|ogp/,u7 p>0,

which belongs to any Sobolev space on the torus = stability 7
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Fourier basis and Sobolev spaces
For u € L?(T9) we associate the Fourier coefficients u, for n € Z9 :
1 —inx i
Up = 77— u(x)e”"™dx st. u= upe.
n (2m)d /Td (x) Z n

The functions (|up|),ez« are called the actions. Specific notation :
(u) = up. We define the Sobolev spaces H5(T9) with the norm

lull e = { D2 (14 1n%) [uaf?

nezd

H*(T9) is an algebra when s > d/2 : there exists a constant Cs > 0 such
that for all u, v € H®, we have

vl s < Gsllull o lIvIl s - (1)
DS ey )



Definition of the logarithm

By classical lifting theorem, we can define a(t) > 0 and 6(t) € R so that
we have the following parametrization, valid for all u such that (u) # 0 :

u(t,x) = e®(a(t) + w(t,x)), (w)=0. (2)

In this case, we can define the logarithm

log(u(t, x)) = i6(t) + log a(t) + log (1 + Wé(,(t;;()> :

This application is well defined and smooth for curves on the domain

<1
H G

Us = {U:ei9(3+W) ‘ (3797 W)7a> 0, <W> =0, Hg‘
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Logarithmic Schrodinger equation

For u=0:
i0p) + A = \ip log [¥)?. (logNLS)

This equation is associated with the energy

o 2 A 2 2 1) dx
H0%) = [Vl + oy [ 1000 (0B e, 0 = 1) .

which is preserved for all time t > 0, as equation (logNLS) can be written

o
oY+

The L2 norm is also preserved along the dynamics, namely for all t > 0,

It iz = 19°)l2-
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Logarithmic Schrodinger equation

Theorem (C., Faou 2022)

FixmeZd, -3 <A <Xp, p>0,N>1.35 >0, C>1, AC [A,\y]

of full measure such that Vs > sy, VA € N\, Jeg > 0 such that if
le=™>ep® — (e ™) ||\, = e <eo, and |90, = p,
then the solution 1 of (logNLS) with (0, x) = ¥°(x) € Us satisfies

He—im.xw(t_7 ) . peie(t)HHS < Ce for t< s_Na

and _
|0 — (m? + 2\ log p)| < Ce2.

Plane waves stability on T¢
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Sketch of the proof and limits

= Stability analysis in H* : strategy of Faou, Gauckler, Lubich (2013) for
cubic NLS.
@ Sketch of the proof :
» use of invariants of (logNLS) in order to reduce the problem,
» linearization of the logarithm around the plane wave,

» use of standard Birkhoff normal theorems (Bambusi, Grébert 2006) to
conclude.

@ Limits :

» result holds for almost all )\,
> sp can be arbitrary large.
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Numerics

We take

1
"~ 1+0.2cos(x)’

u(tx)
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Numerics
We recall that

Bt x) = S wn(t)e™.

nez

Log10 of the actions.

Figure — Evolution of the actions |1,|? of the
initial datum g (A = 0.5).
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Schrédinger-Langevin equation

For 1+ > 0, we now consider the Schrédinger-Langevin equation :

19 + A = M) log [y]2 + %zb log (;”) . (SL)

@ Only stationary plane wave solutions are the constants :

y = pe—2i)\|ogp/,u’ p>0.

o Still preservation of the L? norm.

@ Dissipation of energy = no normal form result available.
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Schrédinger-Langevin equation
Theorem (C., Faou 2022)

Let s > g, A > —%, >0 and p > 0. Then there exists eg > 0 such that,
if the initial datum satisfies ||1)° — (1/1°>||H5 < eo and v, = p then the
solution of (SL) with (0, .) = ¢° € Us satisfies for t > 0,

lW(t,.) — pe~2Mogrli|| < Ce™**(1 + Bt),
where

(i) If u<2y/1+2X\ thena =4 and B =0.

2

(i) fuw=2v1+2\thena =14 and g =1.

2
(i) fpu>2v1+2Xthena =5 — (’2—2 —1- 2)\) € (0,%), and if there

exists n > 2 such that ,u2 = 4n° + 8\n we have B = 1, and if this is
not the case, 8 = 0.

N

Plane waves stability on T¢
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Sketch of the proof

e Scaling factor : if ¢ is solution of (SL) with initial datum

(0, x) = 90, then

K1) exp <2i2 log (1 — e““))

is also a solution of (SL) with initial datum (0, x) = k%°. Thus it is
sufficient to prove the result for p = 1.
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Sketch of the proof

e Scaling factor : if ¢ is solution of (SL) with initial datum
(0, x) = 90, then

K1) exp <2i: log x (1 — e““))

is also a solution of (SL) with initial datum (0, x) = k%°. Thus it is
sufficient to prove the result for p = 1.

o Elimination of the zero mode
Y =e%a+w) with (w)=0.
Preservation of the L2 norm + Parseval :

2
a=/1—|wlp-

Note that we can also control 8 in terms of a and w = ¢ = w.
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Sketch of the proof
@ Analytic development of the logarithm : On I/,

og (1) == 304 (-3)" )

21 /31
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Sketch of the proof
@ Analytic development of the logarithm : On I/,

R S € BT

@ Linearization : we write w in Fourier basis, so

w = E wje’ ™.

J#0
Projecting on the j-th mode, the equation of motion for w; can be
written
. .2 H ©my oP _

where
with P(w,w) = > Pr(w,w)
r>3
and P,(w,w) denotes a polynomial of degree r .
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Sketch of the proof

Denoting W; = (w;, w_;)T and n = |j|? > 1, we have

; . 2
Wi = —iAaW; + O([W[[}2),

where
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Sketch of the proof

Denoting W; = (w;, w_;)T and n = |j|? > 1, we have
; . 2
Wi = —iAaW; + O([W[[}2),

where
An=<n+)\+-2&l )\_-2&’ ).

In particular, the eigenvalues of the matrix —iA, are

1t 1t

—E:tl n2+2)\n—7.
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Sketch of the proof

Denoting W; = (w;, w_;)T and n = |j|? > 1, we have

; . 2
Wi = —iAaW; + O([W[[}2),

where

An_(n+)\+2’f, A— & )

In particular, the eigenvalues of the matrix —iA, are

2
no . 1t
—== 24+ 2\n— —
> I/ n“+2An 2
We can distinguish three cases :

@ 4n? +8X\n— u? > 0 : in this case the eigenvalues are of the form

2
—giién, with 5n:\/n2+2)\n—% > 0.

Plane waves stability on T¢
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Sketch of the proof

@ 4n° 4+ 8An— ;2 =0 : in this case —5 is a double eigenvalue.
The matrix A, can be put under the Jordan form

VIR W}
Pn—lAnPn:<2i A 2i>'

0 ¥

@ 4n° 4+ 8A\n — p? < 0 : note that for given \ and p, this situation
occurs only a finite number of times, as when n becomes large,
n? 4 2\n goes to +oo. In this case the two eigenvalues are under for
the form —a, and —8,, with

2 2
an:g— %—n2—2)\n, ﬁn:% a
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Conclusion

@ To conclude (for instance in the simplest case p < 2v/1 + 2)),

denoting V = P~1W in the system
i0:V =DV + R(V),
and U = e3tV, we get that
i0:U = DU+ e2*R(e”2tV),

with D real and R at least quadratic.
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Conclusion

@ To conclude (for instance in the simplest case p < 2v/1 + 2)),
denoting V = P~1W in the system

i0,V = DV + R(V),
and U = e3tV, we get that
i0:U = DU + e2tR(e™2tV),

with D real and R at least quadratic.

@ In the end, comparison with the ODI

ly| < Me™2ty3/2,

where y(t) = ||U(t,.)||ns. Uniformly bounded under the condition
y(0) < (a/ M),
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Remarks

@ [ =1": Jordan block in the reduced dynamics.

@ When A is fixed, 1 — oo, the damping rate

2A +1 1
ft I

goes to 0. Thus a larger damping coefficient implies a slower
relaxation to the equilibrium (overdamping).

o \> —% crucial. Numerical experiments for A\ = —% tend to show that
the solution converges to a non trivial quasi-periodic solution.
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Numerics

1

tolx) = 1+ 0.2cos(x)’
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Numerics

5
ol
3 T i
H ~
8
2
R .
S ~—
K
g
- e
.
10 =
[

Figure — Evolution of the actions of solution of equation (SL) with initial datum

wo ()\ = 0.5, n = 2)
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Numerics

Log10 of the actions

N\
‘\\ /\\/\\f\
- \ N - ]
- ) ’( \\/ N
~ ™~ Lo
. ) Y
o 5 10 15 20
Time

Figure — Evolution of the actions of solution of equation (SL) with initial datum
wo ()\ = 0.5, n = 4).
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Numerics

Log10 of the actions

15 20

Figure — Evolution of the actions of solution of equation (SL) with initial datum
wo ()\ = —0.5, n = 2)
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Perspectives

@ Damped harmonic oscillator

19 + A = |x|P + %1/1 log (5) .

@ Other mass-preserving damping : linear damping
. 2 1% d
Iatw—FAw:’X‘w—Fz Xv¢+§¢ 5

or Doebner-Goblin models

vIL,),

90 + A = i (Aer e

e Damping for other dispersive PDEs (Klein-Gordon, KdV).
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Thanks for your attention !
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Sketch of the proof

o Galilean invariance principle : if v is a solution, then
o(t,x) =Y(t,x — vt)ef"(l"'Zt/z*"'X)
is also a solution for every v € Z9. Hence
Um(t, x + mt)e_"(‘m|2t+m'x) = pe2iAtlogp vo(t, x),

SO we can restrict our attention to the case m = 0.

e Scaling factor : if ¢ is a solution to (logNLS), then
mw(t,x)em)‘bg”, Kk >0,
also solves (logNLS) with initial datum k1%, so we can take
ot Mz = 10 = 1,

which means that we can consider only the case p = 1.



Sketch of the proof
e Elimination of the zero mode
Y =e’a+w) with (w)=0.
Preservation of the L2 norm

2
a=\/1—|[lwl][-

Note that we can also control @ in terms of a and w :

. 1
0 + 10 + 2\ log(a) = gRe<P(W, w*)),

e Analytic development of the logarithm : On U,

e (1+2) =~ S1(-2)"

n_



Sketch of the proof

The equation of motion for w can be written, for j € Z*,

. . _ oP, _
i0ew; = (1> + Nwj + Aw_; + ?(W w),
Wj

where

with P(w,w) ZP, w, W)
r>3

and P,(w,w) denotes a polynomial of degree r of the form

Pr(w,w) = Z Z Prewy - Wj, W, ...

pra=r  (jf)eZPx 29
j1+...+jp—Z1—...—€q:O

wy

q°



Sketch of the proof
o Diagonalization of the linear part Denoting W, = (w;, w_;) 7,
: . 2
Wj = iAW+ O(|W]| ),

where for n = [j|?> > 1, we have
_( n+ A A
w= (750 )

Lemma

Let A\ > —1/2. Then, for all n > 1, the matrix A, is diagonalized by a
2 x 2 matrix S, that is real symplectic and hermitian and has condition
number smaller than 2 :

snl(—fAn>sn=(Q" 0 ) with Q. — v/ 2o

0 -Q,




Conclusion

@ Non resonance condition and normal form Let r > 1,
Ja = a(r) > 0 s.t. for A € A there exists v > 0, s.t. for all integers p,

g with p+ g < r and for all m = (mq,..., m,) € NP and
n=(n,...,ng) € N9,
Y
Q4o Qo = Q== Q[ > 6
’ 1+ + p 1 q‘ H3(m,n)a ()

except if the frequencies cancel pairwise. Here, u3(m, n) denotes the
third-largest among the integers mq,..., mp, n1,..., ng.

e Condition to apply standard Birkhoff normal theorems (Bambusi,
Grébert 2006).

e Main difference with NLS (Faou, Gauckler, Lubich 2013)

Q, =vVn?+2\n (logNLS)
Qn = /n?+2Xp2n (NLS) p=[[¢¥°]| ,-



o Last change of variable Matrix S, ! are real symplectic

§ \ | - w; .
(§)-5(2,) s

New Hamiltonian system

d oH _
i1 (&(t) = 7, (&(2),€(1))
A =Ho+ P =) wlgl + P(&,9),

70
wj=Qy=vVn+2xn for |jP=n>1

P analytic of degree 3 (4 zero momentum condition)



Logarithmic Schrodinger equation

Theorem

(Theorem 7.2 of Grébert 2007)

There exists a canonical transformation T : V — U which puts H = Hy + P
in normal form up to order N, i.e.,

Hor=Hy+Z+R,

o Hy = ZjeZ Wj|§j 2

e Z is a polynomial of degree N which commutes with all the
super-actions, namely {Z, Jp} = 0 for all n > 1,
J"(Eag) = Zmz:n ‘@‘2

° R C®(V,R) and [|Xr(&,E)l . < Cellélly, for €€V,

o 7 is close to the identity : ||T(£,€) — (é,E)HHS < C5H§||f_lS forall € € V.

7
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