# Dissipation in quantum mechanics : the Schrödinger-Langevin equation 

Quentin Chauleur

PhD advisors: Rémi Carles \& Erwan Faou
IRMAR, Univ. Rennes

IRMAR

May 2022

## Table of contents

(1) Dissipation in quantum mechanics

- Some recalls on classical mechanics
- Damping in quantum mechanics
- Logarithmic Schrödinger equation
- Schrödinger-Langevin equation
(2) Plane waves stability on $\mathbb{T}^{d}$ (joint work with E. Faou)
- Functional analysis framework
- Logarithmic Schrödinger equation
- Schrödinger-Langevin equation
(3) Perspectives


## In classical mechanics

Dissipation with $\mu>0$ of an ODE : for all $t \geq 0$,

$$
E(t)+\mu \int_{0}^{t} \underbrace{D(s)}_{\geq 0} d s=E(0)
$$

## In classical mechanics

Dissipation with $\mu>0$ of an ODE : for all $t \geq 0$,

$$
E(t)+\mu \int_{0}^{t} \underbrace{D(s)}_{\geq 0} d s=E(0)
$$

Example : the damped harmonic oscillator

$$
\ddot{X}+\mu \dot{X}+\omega^{2} X=0,
$$

with dissipated energy

$$
\underbrace{\frac{1}{2} \dot{X}(t)^{2}}_{=E_{\mathrm{kin}}(t)}+\underbrace{\frac{\omega^{2}}{2} X(t)^{2}}_{=E_{\mathrm{pot}}(t)}+\mu \underbrace{\int_{0}^{t} \dot{X}(s)^{2} d s}_{=2 \int_{0}^{t} E_{\mathrm{kin}}(s) d s}=E(0)
$$

Damping in quantum mechanics
Consider (NLS) equation

$$
i \partial_{t} \psi+\Delta \psi+|\psi|^{2} \psi=0
$$

with usual invariants for all $t \geq 0$,

$$
\begin{gathered}
M(t)=\|\psi(t,)\|_{L^{2}\left(\mathbb{R}^{d}\right)}=M(0), \\
E(t)=\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla \psi|^{2}-\frac{1}{4} \int_{\mathbb{R}^{d}}|\psi|^{4}=E(0) .
\end{gathered}
$$

Damping in quantum mechanics
Consider (NLS) equation

$$
i \partial_{t} \psi+\Delta \psi+|\psi|^{2} \psi=0
$$

with usual invariants for all $t \geq 0$,

$$
\begin{gathered}
M(t)=\|\psi(t,)\|_{L^{2}\left(\mathbb{R}^{d}\right)}=M(0), \\
E(t)=\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla \psi|^{2}-\frac{1}{4} \int_{\mathbb{R}^{d}}|\psi|^{4}=E(0) .
\end{gathered}
$$

Typical damping in the mathematical literature (blow-up criterion Fibich 2001, control theory) :

$$
i \partial_{t} \psi+\Delta \psi+|\psi|^{2} \psi+i \mu \psi=0,
$$

with $\mu>0$. No mass-conservation property :

$$
\|\psi(t, .)\|_{L^{2}\left(\mathbb{R}^{d}\right)}=e^{-\mu t}\left\|\psi_{0}\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

## Schrödinger-Langevin Equation

Kostin 1972 derived a nonlinear Schrödinger equation

$$
i \partial_{t} \psi+\Delta \psi=\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right)
$$

which formally preserves mass.

## Schrödinger-Langevin Equation

Kostin 1972 derived a nonlinear Schrödinger equation

$$
i \partial_{t} \psi+\Delta \psi=\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right)
$$

which formally preserves mass.
Few mathematical investigation :

- ill-posedness when $\psi$ tends to 0 ,
- multivaluation of the argument $\psi=|\psi| e^{i \theta}$ with

$$
\theta=\frac{1}{2 i} \log \left(\frac{\psi}{\psi^{*}}\right) .
$$

Lopez \& Montejo-Gamez 2011 : local existence of strong solutions away from zero in a bouded domain.

## Logarithmic Schrödinger equation

Białynicki-Birula \& Mycielski 1976 introduced (logNLS) :

$$
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}
$$

with $\lambda \in \mathbb{R}^{*}$.

## Logarithmic Schrödinger equation

Białynicki-Birula \& Mycielski 1976 introduced (logNLS) :

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2} \tag{logNLS}
\end{equation*}
$$

with $\lambda \in \mathbb{R}^{*}$.

- Derived in quantum optics (Buljan \& al 2003), nuclear physics (Hefter 1985), diffusion phenomena (de Martino \& al 2007).


## Logarithmic Schrödinger equation

Białynicki-Birula \& Mycielski 1976 introduced (logNLS) :

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2} \tag{logNLS}
\end{equation*}
$$

with $\lambda \in \mathbb{R}^{*}$.

- Derived in quantum optics (Buljan \& al 2003), nuclear physics (Hefter 1985), diffusion phenomena (de Martino \& al 2007).
- Mass and energy

$$
\begin{aligned}
M(\psi) & =\|\psi\|_{L^{2}\left(\mathbb{R}^{d}\right)} \\
H(\psi) & =\|\nabla \psi\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{\mathbb{R}^{d}}|\psi|^{2}\left(\log |\psi|^{2}-1\right) \mathrm{d} x .
\end{aligned}
$$

## Logarithmic Schrödinger equation

Białynicki-Birula \& Mycielski 1976 introduced (logNLS) :

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2} \tag{logNLS}
\end{equation*}
$$

with $\lambda \in \mathbb{R}^{*}$.

- Derived in quantum optics (Buljan \& al 2003), nuclear physics (Hefter 1985), diffusion phenomena (de Martino \& al 2007).
- Mass and energy

$$
\begin{aligned}
M(\psi) & =\|\psi\|_{L^{2}\left(\mathbb{R}^{d}\right)} \\
H(\psi) & =\|\nabla \psi\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}+\lambda \int_{\mathbb{R}^{d}}|\psi|^{2}\left(\log |\psi|^{2}-1\right) \mathrm{d} x .
\end{aligned}
$$

- Gaussian solutions :
- $\lambda>0$ : dispersion at rate $(t \sqrt{\log t})^{-d / 2}$,
- $\underline{\lambda<0}$ : existence of stationary solutions called Gaussons.


## Logarithmic Schrödinger equation

$$
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}
$$

- Focusing case $(\lambda>0)$
- Cauchy Problem : Cazenave \& Haraux 1980, Cazenave 2003. Global existence in the energy space

$$
W:=\left\{\left.\psi \in H^{1}\left(\mathbb{R}^{d}\right)|x \mapsto| \psi(x)\right|^{2} \log |\psi(x)|^{2} \in L^{1}\left(\mathbb{R}^{d}\right)\right\}
$$

- Orbital stability of the Gausson (Cazenave 1983, Ardila 2016), existence of multi-Gaussons (Ferriere 2021).


## Logarithmic Schrödinger equation

$$
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}
$$

- Focusing case $(\lambda>0)$
- Cauchy Problem : Cazenave \& Haraux 1980, Cazenave 2003. Global existence in the energy space

$$
W:=\left\{\left.\psi \in H^{1}\left(\mathbb{R}^{d}\right)|x \mapsto| \psi(x)\right|^{2} \log |\psi(x)|^{2} \in L^{1}\left(\mathbb{R}^{d}\right)\right\} .
$$

- Orbital stability of the Gausson (Cazenave 1983, Ardila 2016), existence of multi-Gaussons (Ferriere 2021).
- Defocusing case $(\lambda>0)$
- Global existence in the weighted Sobolev space $H^{1}\left(\mathbb{R}^{d}\right) \cap \mathcal{F}\left(H^{1}\right)$ (Guerrero, López \& Nieto 2010, Carles \& Gallagher 2018).
- Uniform behavior of solutions (Carles \& Gallagher 2018) and universal dispersion at a scale $(t \sqrt{\log t})^{-d / 2}$.


## Schrödinger-Langevin equation

Nassar 1985 introduced (SL) :

$$
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right)
$$

## Schrödinger-Langevin equation

Nassar 1985 introduced (SL) :

$$
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right)
$$

- Quantum mechanics, cosmology, statistical mechanics: Zander \& al. 2015, Mousavi \& al. 2019, Chavanis 2017.


## Schrödinger-Langevin equation

Nassar 1985 introduced (SL) :

$$
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right)
$$

- Quantum mechanics, cosmology, statistical mechanics: Zander \& al. 2015, Mousavi \& al. 2019, Chavanis 2017.
- Fluid formulation with Madelung transform $\psi=\sqrt{\rho} e^{i S}$ and $u=\nabla S$ : isothermal Euler-Korteweg system with damping

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\operatorname{div}(\rho u)=0, \\
\partial_{t}(\rho u)+\operatorname{div}(\rho u \otimes u)+\lambda \nabla \rho+\mu \rho u=\frac{1}{2} \rho \nabla\left(\frac{\Delta \sqrt{\rho}}{\sqrt{\rho}}\right) .
\end{array}\right.
$$

## Schrödinger-Langevin equation

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right) \tag{SL}
\end{equation*}
$$

Analysis on $\mathbb{R}^{d}$

- Mass conservation $\|\rho(t, \cdot)\|_{L^{1}}=\left\|\rho_{0}\right\|_{L^{1}}$ and energy dissipation:

$$
\underbrace{\frac{1}{2} \int_{\mathbb{R}^{d}} \rho|u|^{2}}_{=E_{\text {kin }}(t)}+\underbrace{\int_{\mathbb{R}^{d}}\left(|\nabla \sqrt{\rho}|^{2}+\lambda \rho(\log \rho-1)\right)}_{=E_{\mathrm{pot}}(t)}+\mu \underbrace{\int_{0}^{t} \int_{\mathbb{R}^{d}} \rho|u|^{2} d s}_{=2 \int_{0}^{t} E_{\mathrm{kin}}(s) d s} \leq E_{0}
$$

## Schrödinger-Langevin equation

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right) \tag{SL}
\end{equation*}
$$

Analysis on $\mathbb{R}^{d}$

- Mass conservation $\|\rho(t, \cdot)\|_{L^{1}}=\left\|\rho_{0}\right\|_{L^{1}}$ and energy dissipation:

$$
\underbrace{\frac{1}{2} \int_{\mathbb{R}^{d}} \rho|u|^{2}}_{=E_{\text {kin }}(t)}+\underbrace{\int_{\mathbb{R}^{d}}\left(|\nabla \sqrt{\rho}|^{2}+\lambda \rho(\log \rho-1)\right)}_{=E_{\mathrm{pot}}(t)}+\mu \underbrace{\int_{0}^{t} \int_{\mathbb{R}^{d}} \rho|u|^{2} d s}_{=2 \int_{0}^{t} E_{\text {kin }}(s) d s} \leq E_{0}
$$

- Gaussian particular solutions.


## Schrödinger-Langevin equation

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right) \tag{SL}
\end{equation*}
$$

Analysis on $\mathbb{R}^{d}$

- Mass conservation $\|\rho(t, \cdot)\|_{L^{1}}=\left\|\rho_{0}\right\|_{L^{1}}$ and energy dissipation:

$$
\underbrace{\frac{1}{2} \int_{\mathbb{R}^{d}} \rho|u|^{2}}_{=E_{\text {kin }}(t)}+\underbrace{\int_{\mathbb{R}^{d}}\left(|\nabla \sqrt{\rho}|^{2}+\lambda \rho(\log \rho-1)\right)}_{=E_{\mathrm{pot}}(t)}+\mu \underbrace{\int_{0}^{t} \int_{\mathbb{R}^{d}} \rho|u|^{2} d s}_{=2 \int_{0}^{t} E_{\text {kin }}(s) d s} \leq E_{0}
$$

- Gaussian particular solutions.
- Dynamics (C. 2021) :
- $\lambda>0$ : Universal dispersion in $t^{-d / 4}$, slowlier than the linear and logarithmic one.
- $\lambda<0$ : Convergence towards the Gausson $e^{\lambda|x|^{2}}$.


## Equation on $\mathbb{T}^{d}$

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right) \tag{SL}
\end{equation*}
$$

## Equation on $\mathbb{T}^{d}$

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right) \tag{SL}
\end{equation*}
$$

- Global existence on $H^{1}$ (compactness) when $\mu=0$.


## Equation on $\mathbb{T}^{d}$

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right) \tag{SL}
\end{equation*}
$$

- Global existence on $H^{1}$ (compactness) when $\mu=0$.
- No Gaussian calculus.


## Equation on $\mathbb{T}^{d}$

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right) \tag{SL}
\end{equation*}
$$

- Global existence on $H^{1}$ (compactness) when $\mu=0$.
- No Gaussian calculus.
- For initial data made of a single Fourier mode $u(0, x)=\rho e^{i m \cdot x}$ (with $\rho>0$ and $\left.m \in \mathbb{Z}^{d}\right),(\log N L S)$ has the unique plane-wave solution

$$
\nu_{m}(t, x)=\rho e^{i(m \cdot x-\omega t)}
$$

with $\omega=|m|^{2}+2 \lambda \log \rho$, and the only stationary plane wave solutions of (SL) are the constant plane wave functions of the form

$$
\nu=\rho e^{-2 i \lambda \log \rho / \mu}, \quad \rho>0
$$

which belongs to any Sobolev space on the torus $\Rightarrow$ stability?

## Fourier basis and Sobolev spaces

For $u \in L^{2}\left(\mathbb{T}^{d}\right)$ we associate the Fourier coefficients $u_{n}$ for $n \in \mathbb{Z}^{d}$ :

$$
u_{n}=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}} u(x) e^{-i n x} \mathrm{~d} x \quad \text { s.t. } \quad u=\sum_{n \in \mathbb{Z}^{d}} u_{n} e^{i n \cdot x}
$$

The functions $\left(\left|u_{n}\right|\right)_{n \in \mathbb{Z}^{d}}$ are called the actions. Specific notation : $\langle u\rangle:=u_{0}$. We define the Sobolev spaces $H^{s}\left(\mathbb{T}^{d}\right)$ with the norm

$$
\|u\|_{H^{s}}=\left(\sum_{n \in \mathbb{Z}^{d}}\left(1+|n|^{2}\right)^{s}\left|u_{n}\right|^{2}\right)^{\frac{1}{2}}
$$

$H^{s}\left(\mathbb{T}^{d}\right)$ is an algebra when $s>d / 2:$ there exists a constant $C_{s}>0$ such that for all $u, v \in H^{s}$, we have

$$
\begin{equation*}
\|u v\|_{H^{s}} \leq C_{s}\|u\|_{H^{s}}\|v\|_{H^{s}} . \tag{1}
\end{equation*}
$$

## Definition of the logarithm

By classical lifting theorem, we can define $a(t)>0$ and $\theta(t) \in \mathbb{R}$ so that we have the following parametrization, valid for all $u$ such that $\langle u\rangle \neq 0$ :

$$
\begin{equation*}
u(t, x)=e^{i \theta(t)}(a(t)+w(t, x)), \quad\langle w\rangle=0 \tag{2}
\end{equation*}
$$

In this case, we can define the logarithm

$$
\log (u(t, x)):=i \theta(t)+\log a(t)+\log \left(1+\frac{w(t, x)}{a(t)}\right)
$$

This application is well defined and smooth for curves on the domain

$$
\mathcal{U}_{s}=\left\{u=e^{i \theta}(a+w) \mid(a, \theta, w), a>0,\langle w\rangle=0, \quad\left\|\frac{w}{a}\right\|_{H^{s}}<\frac{1}{C_{s}}\right\} .
$$

## Logarithmic Schrödinger equation

For $\mu=0$ :

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2} \tag{logNLS}
\end{equation*}
$$

This equation is associated with the energy

$$
H\left(\psi, \psi^{*}\right):=\|\nabla \psi\|_{L^{2}}^{2}+\frac{\lambda}{(2 \pi)^{d}} \int_{\mathbb{T}^{d}}|\psi(t, x)|^{2}\left(\log |\psi(t, x)|^{2}-1\right) d x
$$

which is preserved for all time $t \geq 0$, as equation $(\log N L S)$ can be written

$$
i \partial_{t} \psi=\frac{\partial H}{\partial \psi^{*}}\left(\psi, \psi^{*}\right)
$$

The $L^{2}$ norm is also preserved along the dynamics, namely for all $t \geq 0$,

$$
\|\psi(t, \cdot)\|_{L^{2}}=\left\|\psi^{0}\right\|_{L^{2}}
$$

## Logarithmic Schrödinger equation

## Theorem (C., Faou 2022)

Fix $m \in \mathbb{Z}^{d},-\frac{1}{2}<\lambda_{-}<\lambda_{+}, \rho>0, N>1 . \exists s_{0}>0, C \geq 1, \wedge \subset\left[\lambda_{-}, \lambda_{+}\right]$ of full measure such that $\forall s \geq s_{0}, \forall \lambda \in \Lambda, \exists \varepsilon_{0}>0$ such that if

$$
\left\|e^{-i m \cdot x} \psi^{0}-\left\langle e^{-i m \cdot x} \psi^{0}\right\rangle\right\|_{H^{5}}=\varepsilon \leq \varepsilon_{0}, \quad \text { and } \quad\left\|\psi^{0}\right\|_{L^{2}}=\rho,
$$

then the solution $\psi$ of $(\log N L S)$ with $\psi(0, x)=\psi^{0}(x) \in \mathcal{U}_{s}$ satisfies

$$
\left\|e^{-i m . x} \psi(t, \cdot)-\rho e^{i \theta(t)}\right\|_{H^{s}} \leq C \varepsilon \quad \text { for } \quad t \leq \varepsilon^{-N},
$$

and

$$
\left|\dot{\theta}-\left(m^{2}+2 \lambda \log \rho\right)\right| \leq C \varepsilon^{2} .
$$

## Sketch of the proof and limits

$\Rightarrow$ Stability analysis in $H^{s}$ : strategy of Faou, Gauckler, Lubich (2013) for cubic NLS.

- Sketch of the proof :
- use of invariants of ( $\operatorname{logNLS}$ ) in order to reduce the problem,
- linearization of the logarithm around the plane wave,
- use of standard Birkhoff normal theorems (Bambusi, Grébert 2006) to conclude.
- Limits:
- result holds for almost all $\lambda$,
- $s_{0}$ can be arbitrary large.


## Numerics

We take

$$
\psi_{0}(x)=\frac{1}{1+0.2 \cos (x)}
$$



Figure - Solution of equation $(\log N L S)$ with initial datum $\psi_{0}(\lambda=0.5)$.

## Numerics

We recall that

$$
\psi(t, x)=\sum_{n \in \mathbb{Z}} \psi_{n}(t) e^{i n x}
$$



Figure - Evolution of the actions $\left|\psi_{n}\right|^{2}$ of the solution of equation $(\operatorname{logNLS})$ with initial datum $\psi_{0}(\lambda=0.5)$.

## Schrödinger-Langevin equation

For $\mu>0$, we now consider the Schrödinger-Langevin equation :

$$
\begin{equation*}
i \partial_{t} \psi+\Delta \psi=\lambda \psi \log |\psi|^{2}+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right) . \tag{SL}
\end{equation*}
$$

- Only stationary plane wave solutions are the constants :

$$
\nu=\rho e^{-2 i \lambda \log \rho / \mu}, \quad \rho>0
$$

- Still preservation of the $L^{2}$ norm.
- Dissipation of energy $\Rightarrow$ no normal form result available.


## Schrödinger-Langevin equation

## Theorem (C., Faou 2022)

Let $s>\frac{d}{2}, \lambda>-\frac{1}{2}, \mu>0$ and $\rho>0$. Then there exists $\varepsilon_{0}>0$ such that, if the initial datum satisfies $\left\|\psi^{0}-\left\langle\psi^{0}\right\rangle\right\|_{H^{s}} \leq \varepsilon_{0}$ and $\left\|\psi_{0}\right\|_{L^{2}}=\rho$ then the solution of $(S L)$ with $\psi(0,)=.\psi^{0} \in \mathcal{U}_{s}$ satisfies for $t \geq 0$,

$$
\left\|\psi(t, .)-\rho e^{-2 i \lambda \log \rho / \mu}\right\|_{H^{s}} \leq C e^{-\alpha t}(1+\beta t)
$$

where
(i) If $\mu<2 \sqrt{1+2 \lambda}$ then $\alpha=\frac{\mu}{2}$ and $\beta=0$.
(ii) If $\mu=2 \sqrt{1+2 \lambda}$ then $\alpha=\frac{\mu}{2}$ and $\beta=1$.
(iii) If $\mu>2 \sqrt{1+2 \lambda}$ then $\alpha=\frac{\mu}{2}-\left(\frac{\mu^{2}}{4}-1-2 \lambda\right)^{\frac{1}{2}} \in\left(0, \frac{\mu}{2}\right)$, and if there exists $n \geq 2$ such that $\mu^{2}=4 n^{2}+8 \lambda n$ we have $\beta=1$, and if this is not the case, $\beta=0$.

## Sketch of the proof

- Scaling factor : if $\psi$ is solution of (SL) with initial datum $\psi(0, x)=\psi^{0}$, then

$$
\kappa \psi \exp \left(2 i \frac{\lambda}{\mu} \log \kappa\left(1-e^{-\mu t}\right)\right)
$$

is also a solution of (SL) with initial datum $\psi(0, x)=\kappa \psi^{0}$. Thus it is sufficient to prove the result for $\rho=1$.

## Sketch of the proof

- Scaling factor : if $\psi$ is solution of (SL) with initial datum $\psi(0, x)=\psi^{0}$, then

$$
\kappa \psi \exp \left(2 i \frac{\lambda}{\mu} \log \kappa\left(1-e^{-\mu t}\right)\right)
$$

is also a solution of (SL) with initial datum $\psi(0, x)=\kappa \psi^{0}$. Thus it is sufficient to prove the result for $\rho=1$.

- Elimination of the zero mode

$$
\psi=e^{i \theta}(a+w) \quad \text { with } \quad\langle w\rangle=0
$$

Preservation of the $L^{2}$ norm + Parseval :

$$
a=\sqrt{1-\|w\|_{L^{2}}^{2}} .
$$

Note that we can also control $\theta$ in terms of $a$ and $w \Rightarrow \psi \equiv w$.

## Sketch of the proof

- Analytic development of the logarithm: On $\mathcal{U}_{s}$,

$$
\begin{equation*}
\log \left(1+\frac{w}{a}\right)=-\sum_{n \geq 1} \frac{1}{n}\left(-\frac{w}{a}\right)^{n} \tag{3}
\end{equation*}
$$

## Sketch of the proof

- Analytic development of the logarithm: On $\mathcal{U}_{s}$,

$$
\begin{equation*}
\log \left(1+\frac{w}{a}\right)=-\sum_{n \geq 1} \frac{1}{n}\left(-\frac{w}{a}\right)^{n} \tag{3}
\end{equation*}
$$

- Linearization : we write $w$ in Fourier basis, so

$$
w=\sum_{j \neq 0} w_{j} e^{i j \cdot x}
$$

Projecting on the $j$-th mode, the equation of motion for $w_{j}$ can be written

$$
i \partial_{t} w_{j}=\left(|j|^{2}+\lambda+\frac{\mu}{2 i}\right) w_{j}+\left(\lambda-\frac{\mu}{2 i}\right) \bar{w}_{-j}+\frac{\partial \mathcal{P}}{\partial \bar{w}_{j}}(w, \bar{w})
$$

where

$$
\text { with } \mathcal{P}(w, \bar{w})=\sum_{r \geq 3} \mathcal{P}_{r}(w, \bar{w})
$$

and $\mathcal{P}_{r}(w, \bar{w})$ denotes a polynomial of degree $r$.

## Sketch of the proof

Denoting $W_{j}=\left(w_{j}, \bar{w}_{-j}\right)^{T}$ and $n=|j|^{2} \geq 1$, we have

$$
\dot{W}_{j}=-i A_{n} W_{j}+\mathcal{O}\left(\|W\|_{L^{2}}^{2}\right),
$$

where

$$
A_{n}=\left(\begin{array}{cc}
n+\lambda+\frac{\mu}{2 i} & \lambda-\frac{\mu}{2 i} \\
-\lambda-\frac{\mu}{2 i} & -n-\lambda+\frac{\mu}{2 i}
\end{array}\right) .
$$

Sketch of the proof
Denoting $W_{j}=\left(w_{j}, \bar{w}_{-j}\right)^{T}$ and $n=|j|^{2} \geq 1$, we have

$$
\dot{W}_{j}=-i A_{n} W_{j}+\mathcal{O}\left(\|W\|_{L^{2}}^{2}\right),
$$

where

$$
A_{n}=\left(\begin{array}{cc}
n+\lambda+\frac{\mu}{2 i} & \lambda-\frac{\mu}{2 i} \\
-\lambda-\frac{\mu}{2 i} & -n-\lambda+\frac{\mu}{2 i}
\end{array}\right) .
$$

In particular, the eigenvalues of the matrix $-i A_{n}$ are

$$
-\frac{\mu}{2} \pm i \sqrt{n^{2}+2 \lambda n-\frac{\mu^{2}}{4}} .
$$

## Sketch of the proof

Denoting $W_{j}=\left(w_{j}, \bar{w}_{-j}\right)^{T}$ and $n=|j|^{2} \geq 1$, we have

$$
\dot{W}_{j}=-i A_{n} W_{j}+\mathcal{O}\left(\|W\|_{L^{2}}^{2}\right),
$$

where

$$
A_{n}=\left(\begin{array}{cc}
n+\lambda+\frac{\mu}{2 i} & \lambda-\frac{\mu}{2 i} \\
-\lambda-\frac{\mu}{2 i} & -n-\lambda+\frac{\mu}{2 i}
\end{array}\right) .
$$

In particular, the eigenvalues of the matrix $-i A_{n}$ are

$$
-\frac{\mu}{2} \pm i \sqrt{n^{2}+2 \lambda n-\frac{\mu^{2}}{4}} .
$$

We can distinguish three cases :

- $4 n^{2}+8 \lambda n-\mu^{2}>0$ : in this case the eigenvalues are of the form

$$
-\frac{\mu}{2} \pm i \delta_{n}, \quad \text { with } \quad \delta_{n}=\sqrt{n^{2}+2 \lambda n-\frac{\mu^{2}}{4}}>0
$$

## Sketch of the proof

- $4 n^{2}+8 \lambda n-\mu^{2}=0$ : in this case $-\frac{\mu}{2}$ is a double eigenvalue. The matrix $A_{n}$ can be put under the Jordan form

$$
P_{n}^{-1} A_{n} P_{n}=\left(\begin{array}{cc}
\frac{\mu}{2 i} & \lambda-\frac{\mu}{2 i} \\
0 & \frac{\mu}{2 i}
\end{array}\right) .
$$

- $4 n^{2}+8 \lambda n-\mu^{2}<0$ : note that for given $\lambda$ and $\mu$, this situation occurs only a finite number of times, as when $n$ becomes large, $n^{2}+2 \lambda n$ goes to $+\infty$. In this case the two eigenvalues are under for the form $-\alpha_{n}$ and $-\beta_{n}$, with

$$
\alpha_{n}=\frac{\mu}{2}-\sqrt{\frac{\mu^{2}}{4}-n^{2}-2 \lambda n}, \quad \beta_{n}=\frac{\mu}{2}+\sqrt{\frac{\mu^{2}}{4}-n^{2}-2 \lambda n} .
$$

## Conclusion

- To conclude (for instance in the simplest case $\mu<2 \sqrt{1+2 \lambda}$ ), denoting $V=P^{-1} W$ in the system

$$
i \partial_{t} V=D V+R(V)
$$

and $U=e^{\frac{\mu}{2} t} V$, we get that

$$
i \partial_{t} U=\tilde{D} U+e^{\frac{\mu}{2} t} R\left(e^{-\frac{\mu}{2} t} V\right)
$$

with $\tilde{D}$ real and $R$ at least quadratic.

## Conclusion

- To conclude (for instance in the simplest case $\mu<2 \sqrt{1+2 \lambda}$ ), denoting $V=P^{-1} W$ in the system

$$
i \partial_{t} V=D V+R(V)
$$

and $U=e^{\frac{\mu}{2} t} V$, we get that

$$
i \partial_{t} U=\tilde{D} U+e^{\frac{\mu}{2} t} R\left(e^{-\frac{\mu}{2} t} V\right)
$$

with $\tilde{D}$ real and $R$ at least quadratic.

- In the end, comparison with the ODI

$$
|\dot{y}| \leq M e^{-\frac{\alpha}{2} t} y^{3 / 2}
$$

where $y(t)=\|U(t, .)\|_{H^{s}}$. Uniformly bounded under the condition $y(0)<(\alpha / M)^{2}$.

## Remarks

- $\beta=1$ : Jordan block in the reduced dynamics.
- When $\lambda$ is fixed, $\mu \rightarrow \infty$, the damping rate

$$
\alpha=\frac{2 \lambda+1}{\mu}+\mathcal{O}\left(\frac{1}{\mu^{3}}\right)
$$

goes to 0 . Thus a larger damping coefficient implies a slower relaxation to the equilibrium (overdamping).

- $\lambda>-\frac{1}{2}$ crucial. Numerical experiments for $\lambda=-\frac{1}{2}$ tend to show that the solution converges to a non trivial quasi-periodic solution.


## Numerics

$$
\psi_{0}(x)=\frac{1}{1+0.2 \cos (x)}
$$



Figure - Solution of equation (SL) with initial datum $\psi_{0}(\lambda=0.5, \mu=2)$.

## Numerics



Figure - Evolution of the actions of solution of equation (SL) with initial datum $\psi_{0}(\lambda=0.5, \mu=2)$.

## Numerics



Figure - Evolution of the actions of solution of equation (SL) with initial datum $\psi_{0}(\lambda=0.5, \mu=4)$.

## Numerics



Figure - Evolution of the actions of solution of equation (SL) with initial datum $\psi_{0}(\lambda=-0.5, \mu=2)$.

## Perspectives

- Damped harmonic oscillator

$$
i \partial_{t} \psi+\Delta \psi=|x|^{2} \psi+\frac{\mu}{2 i} \psi \log \left(\frac{\psi}{\psi^{*}}\right)
$$

- Other mass-preserving damping : linear damping

$$
i \partial_{t} \psi+\Delta \psi=|x|^{2} \psi+\frac{\mu}{2 i}\left(x \cdot \nabla \psi+\frac{d}{2} \psi\right)
$$

or Doebner-Goblin models

$$
i \partial_{t} \psi+\Delta \psi=i \mu\left(\Delta \psi+\frac{|\nabla \psi|^{2}}{|\psi|^{2}} \psi\right)
$$

- Damping for other dispersive PDEs (Klein-Gordon, KdV).


## Thanks for your attention!

## Sketch of the proof

- Galilean invariance principle : if $\psi$ is a solution, then

$$
\varphi(t, x)=\psi(t, x-v t) e^{-i\left(|v|^{2} t / 2-v \cdot x\right)}
$$

is also a solution for every $v \in \mathbb{Z}^{d}$. Hence

$$
\nu_{m}(t, x+m t) e^{-i\left(|m|^{2} t+m \cdot x\right)}=\rho e^{-2 i \lambda t \log \rho}=\nu_{0}(t, x),
$$

so we can restrict our attention to the case $m=0$.

- Scaling factor : if $\psi$ is a solution to ( $\operatorname{logNLS}$ ), then

$$
\kappa \psi(t, x) e^{2 i t \lambda \log \kappa}, \quad \kappa>0
$$

also solves $(\log N L S)$ with initial datum $\kappa \psi^{0}$, so we can take

$$
\|\psi(t, \cdot)\|_{L^{2}}=\left\|\psi^{0}\right\|_{L^{2}}=1
$$

which means that we can consider only the case $\rho=1$.

## Sketch of the proof

- Elimination of the zero mode

$$
\psi=e^{i \theta}(a+w) \quad \text { with } \quad\langle w\rangle=0
$$

Preservation of the $L^{2}$ norm

$$
a=\sqrt{1-\|w\|_{L^{2}}^{2}} .
$$

Note that we can also control $\theta$ in terms of $a$ and $w$ :

$$
\begin{equation*}
\dot{\theta}+\mu \theta+2 \lambda \log (a)=\frac{1}{a} \operatorname{Re}\left\langle\mathcal{P}\left(w, w^{*}\right)\right\rangle, \tag{4}
\end{equation*}
$$

- Analytic development of the logarithm: On $\mathcal{U}_{s}$,

$$
\begin{equation*}
\log \left(1+\frac{w}{a}\right)=-\sum_{n \geq 1} \frac{1}{n}\left(-\frac{w}{a}\right)^{n} \tag{5}
\end{equation*}
$$

## Sketch of the proof

The equation of motion for $w$ can be written, for $j \in \mathbb{Z}^{*}$,

$$
i \partial_{t} w_{j}=\left(|j|^{2}+\lambda\right) w_{j}+\lambda \bar{w}_{-j}+\frac{\partial \mathcal{P}}{\partial \bar{w}_{j}}(w, \bar{w})
$$

where

$$
\text { with } \mathcal{P}(w, \bar{w})=\sum_{r \geq 3} \mathcal{P}_{r}(w, \bar{w})
$$

and $\mathcal{P}_{r}(w, \bar{w})$ denotes a polynomial of degree $r$ of the form

$$
\mathcal{P}_{r}(w, \bar{w})=\sum_{p+q=r} \sum_{\substack{(j, \ell) \in \mathcal{Z}^{p} \times \mathcal{Z}^{q} \\ j_{1}+\ldots+j_{p}-\ell_{1}-\ldots-\ell_{q}=0}} \mathcal{P}_{k, \ell} w_{j_{1}} \ldots w_{j_{p}} \bar{w}_{\ell_{1}} \ldots \bar{w}_{\ell_{q}} .
$$

## Sketch of the proof

- Diagonalization of the linear part Denoting $W_{j}=\left(w_{j}, \bar{w}_{-j}\right)^{T}$,

$$
\dot{W}_{j}=-i A_{|j|^{2}} W_{j}+\mathcal{O}\left(\|W\|_{L^{2}}^{2}\right)
$$

where for $n=|j|^{2} \geq 1$, we have

$$
A_{n}=\left(\begin{array}{cc}
n+\lambda & \lambda \\
-\lambda & -n-\lambda
\end{array}\right)
$$

## Lemma

Let $\lambda>-1 / 2$. Then, for all $n \geq 1$, the matrix $A_{n}$ is diagonalized by a $2 \times 2$ matrix $S_{n}$ that is real symplectic and hermitian and has condition number smaller than 2 :

$$
S_{n}^{-1}\left(-i A_{n}\right) S_{n}=\left(\begin{array}{cc}
\Omega_{n} & 0 \\
0 & -\Omega_{n}
\end{array}\right) \text { with } \quad \Omega_{n}=i \sqrt{n^{2}+2 \lambda n} .
$$

## Conclusion

- Non resonance condition and normal form Let $r>1$, $\exists \alpha=\alpha(r)>0$ s.t. for $\lambda \in \Lambda$ there exists $\gamma>0$, s.t. for all integers $p$, $q$ with $p+q \leq r$ and for all $m=\left(m_{1}, \ldots, m_{p}\right) \in \mathbb{N}^{p}$ and $n=\left(n_{1}, \ldots, n_{q}\right) \in \mathbb{N}^{q}$,

$$
\begin{equation*}
\left|\Omega_{m_{1}}+\ldots+\Omega_{m_{p}}-\Omega_{n_{1}}-\ldots-\Omega_{n_{q}}\right| \geq \frac{\gamma}{\mu_{3}(m, n)^{\alpha}} \tag{6}
\end{equation*}
$$

except if the frequencies cancel pairwise. Here, $\mu_{3}(m, n)$ denotes the third-largest among the integers $m_{1}, \ldots, m_{p}, n_{1}, \ldots, n_{q}$.

- Condition to apply standard Birkhoff normal theorems (Bambusi, Grébert 2006).
- Main difference with NLS (Faou, Gauckler, Lubich 2013)

$$
\begin{array}{ll}
\Omega_{n}=\sqrt{n^{2}+2 \lambda n} & (\operatorname{logNLS}) \\
\Omega_{n}=\sqrt{n^{2}+2 \lambda \rho^{2} n} & (\mathrm{NLS}) \quad \rho=\left\|\psi^{0}\right\|_{L^{2}}
\end{array}
$$

- Last change of variable Matrix $S_{n}^{-1}$ are real symplectic

$$
\binom{\xi_{j}}{\bar{\xi}_{-j}}=S_{n}^{-1}\binom{w_{j}}{\bar{w}_{-j}}, \quad n=|j|^{2} \geq 1
$$

New Hamiltonian system

$$
\begin{aligned}
& i \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\xi_{j}(t)\right)=\frac{\partial \tilde{H}}{\partial \bar{\xi}_{j}}(\xi(t), \bar{\xi}(t)) \\
& \tilde{H}(\xi, \bar{\xi})=H_{0}+P=\sum_{j \neq 0} \omega_{j}\left|\xi_{j}\right|^{2}+P(\xi, \bar{\xi}) \\
& \omega_{j}=\Omega_{n}=\sqrt{n^{2}+2 \lambda n} \text { for }|j|^{2}=n \geq 1 \\
& P \quad \text { analytic of degree } 3 \quad(+ \text { zero momentum condition })
\end{aligned}
$$

## Logarithmic Schrödinger equation

## Theorem

(Theorem 7.2 of Grébert 2007)
There exists a canonical transformation $\tau: \mathcal{V} \rightarrow \mathcal{U}$ which puts $\tilde{H}=H_{0}+P$ in normal form up to order N, i.e.,

$$
\tilde{H} \circ \tau=H_{0}+Z+R,
$$

- $H_{0}=\sum_{j \in \mathcal{Z}} \omega_{j}\left|\xi_{j}\right|^{2}$,
- $Z$ is a polynomial of degree $N$ which commutes with all the super-actions, namely $\left\{Z, J_{n}\right\}=0$ for all $n \geq 1$, $J_{n}(\xi, \bar{\xi})=\sum_{|j|^{2}=n}\left|\xi_{j}\right|^{2}$.
- $R \in \mathcal{C}^{\infty}(\mathcal{V}, \mathbb{R})$ and $\left\|X_{R}(\xi, \bar{\xi})\right\|_{H^{s}} \leq C_{s}\|\xi\|_{H^{s}}^{N}$ for $\xi \in \mathcal{V}$,
- $\tau$ is close to the identity : $\|\tau(\xi, \bar{\xi})-(\xi, \bar{\xi})\|_{H^{s}} \leq C_{s}\|\xi\|_{H^{s}}^{2}$ for all $\xi \in \mathcal{V}$.

