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In classical mechanics

Dissipation with µ > 0 of an ODE : for all t ≥ 0,

E (t) + µ

∫ t

0

D(s)︸︷︷︸
≥0

ds = E (0).

Example : the damped harmonic oscillator

Ẍ + µẊ + ω2X = 0,

with dissipated energy

1

2
Ẋ (t)2︸ ︷︷ ︸

=Ekin(t)

+
ω2

2
X (t)2︸ ︷︷ ︸

=Epot(t)

+µ

∫ t

0

Ẋ (s)2ds︸ ︷︷ ︸
=2

∫ t
0 Ekin(s)ds

= E (0).

Dissipation in quantum mechanics Some recalls on classical mechanics Journée Ananum 3 / 31



In classical mechanics

Dissipation with µ > 0 of an ODE : for all t ≥ 0,

E (t) + µ

∫ t

0

D(s)︸︷︷︸
≥0

ds = E (0).

Example : the damped harmonic oscillator
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Damping in quantum mechanics
Consider (NLS) equation

i∂tψ +∆ψ + |ψ|2ψ = 0

with usual invariants for all t ≥ 0,

M(t) = ∥ψ(t, .)∥L2(Rd ) = M(0),

E (t) =
1

2

∫
Rd

|∇ψ|2 − 1

4

∫
Rd

|ψ|4 = E (0).

Typical damping in the mathematical literature (blow-up criterion Fibich

2001, control theory) :

i∂tψ +∆ψ + |ψ|2ψ + iµψ = 0,

with µ > 0. No mass-conservation property :

∥ψ(t, .)∥L2(Rd ) = e−µt∥ψ0∥L2(Rd ).
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Schrödinger-Langevin Equation

Kostin 1972 derived a nonlinear Schrödinger equation

i∂tψ +∆ψ =
µ

2i
ψ log

(
ψ

ψ∗

)
which formally preserves mass.

Few mathematical investigation :

ill-posedness when ψ tends to 0,

multivaluation of the argument ψ = |ψ|e iθ with

θ =
1

2i
log

(
ψ

ψ∗

)
.

Lopez & Montejo-Gamez 2011 : local existence of strong solutions away

from zero in a bouded domain.
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Logarithmic Schrödinger equation

Biaªynicki-Birula & Mycielski 1976 introduced (logNLS) :

i∂tψ +∆ψ = λψ log |ψ|2, (logNLS)

with λ ∈ R∗.

Derived in quantum optics (Buljan & al 2003), nuclear physics (Hefter

1985), di�usion phenomena (de Martino & al 2007).

Mass and energy

M(ψ) = ∥ψ∥
L2(Rd )

.

H(ψ) = ∥∇ψ∥2
L2(Rd )

+ λ

∫
Rd

|ψ|2(log |ψ|2 − 1)dx .

Gaussian solutions :
▶ λ > 0 : dispersion at rate (t

√
logt)−d/2,

▶ λ < 0 : existence of stationary solutions called Gaussons.
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Logarithmic Schrödinger equation

i∂tψ +∆ψ = λψ log |ψ|2

Focusing case (λ > 0)

▶ Cauchy Problem : Cazenave & Haraux 1980, Cazenave 2003. Global
existence in the energy space

W :=
{
ψ ∈ H1(Rd)

∣∣ x 7→ |ψ(x)|2 log |ψ(x)|2 ∈ L1(Rd)
}
.

▶ Orbital stability of the Gausson (Cazenave 1983, Ardila 2016),
existence of multi-Gaussons (Ferriere 2021).

Defocusing case (λ > 0)

▶ Global existence in the weighted Sobolev space H1(Rd) ∩ F(H1)
(Guerrero, López & Nieto 2010, Carles & Gallagher 2018).

▶ Uniform behavior of solutions (Carles & Gallagher 2018) and universal
dispersion at a scale (t

√
log t)−d/2.
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Schrödinger-Langevin equation

Nassar 1985 introduced (SL) :

i∂tψ +∆ψ = λψ log |ψ|2 + µ

2i
ψ log

(
ψ

ψ∗

)

Quantum mechanics, cosmology, statistical mechanics : Zander & al.

2015, Mousavi & al. 2019, Chavanis 2017.

Fluid formulation with Madelung transform ψ =
√
ρe iS and u = ∇S :

isothermal Euler-Korteweg system with damping
∂tρ+ div(ρu) = 0,

∂t(ρu) + div (ρu ⊗ u) + λ∇ρ+ µρu =
1

2
ρ∇

(
∆
√
ρ

√
ρ

)
.
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Schrödinger-Langevin equation

i∂tψ +∆ψ = λψ log |ψ|2 + µ

2i
ψ log

(
ψ

ψ∗

)
(SL)

Analysis on Rd

Mass conservation ∥ρ(t, ·)∥L1 = ∥ρ0∥L1 and energy dissipation :

1

2

∫
Rd

ρ|u|2︸ ︷︷ ︸
=Ekin(t)

+

∫
Rd

(
|∇√

ρ|2 + λρ(log ρ− 1)
)

︸ ︷︷ ︸
=Epot(t)

+µ

∫ t

0

∫
Rd

ρ|u|2ds︸ ︷︷ ︸
=2

∫ t
0 Ekin(s)ds

≤ E0.

Gaussian particular solutions.

Dynamics (C. 2021) :
▶ λ > 0 : Universal dispersion in t−d/4, slowlier than the linear and

logarithmic one.
▶ λ < 0 : Convergence towards the Gausson eλ|x|

2

.
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Equation on Td

i∂tψ +∆ψ = λψ log |ψ|2 + µ

2i
ψ log

(
ψ

ψ∗

)
(SL)

Global existence on H1 (compactness) when µ = 0.

No Gaussian calculus.

For initial data made of a single Fourier mode u(0, x) = ρe im·x (with

ρ > 0 and m ∈ Zd), (logNLS) has the unique plane-wave solution

νm(t, x) = ρe i(m·x−ωt)

with ω = |m|2 + 2λ log ρ, and the only stationary plane wave solutions

of (SL) are the constant plane wave functions of the form

ν = ρe−2iλ log ρ/µ, ρ > 0,

which belongs to any Sobolev space on the torus ⇒ stability ?
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Fourier basis and Sobolev spaces

For u ∈ L2(Td) we associate the Fourier coe�cients un for n ∈ Zd :

un =
1

(2π)d

∫
Td

u(x)e−inx
dx s.t. u =

∑
n∈Zd

une
in·x .

The functions (|un|)n∈Zd are called the actions. Speci�c notation :

⟨u⟩ := u0. We de�ne the Sobolev spaces Hs(Td) with the norm

∥u∥
Hs =

∑
n∈Zd

(
1+ |n|2

)s |un|2
 1

2

.

Hs(Td) is an algebra when s > d/2 : there exists a constant Cs > 0 such

that for all u, v ∈ Hs , we have

∥uv∥
Hs ≤ Cs∥u∥Hs ∥v∥Hs . (1)
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De�nition of the logarithm

By classical lifting theorem, we can de�ne a(t) > 0 and θ(t) ∈ R so that

we have the following parametrization, valid for all u such that ⟨u⟩ ≠ 0 :

u(t, x) = e iθ(t)(a(t) + w(t, x)), ⟨w⟩ = 0. (2)

In this case, we can de�ne the logarithm

log(u(t, x)) := iθ(t) + log a(t) + log

(
1+

w(t, x)

a(t)

)
.

This application is well de�ned and smooth for curves on the domain

Us =

{
u = e iθ(a+ w)

∣∣∣∣ (a, θ,w), a > 0, ⟨w⟩ = 0,
∥∥∥w
a

∥∥∥
Hs
<

1

Cs

}
.
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Logarithmic Schrödinger equation

For µ = 0 :

i∂tψ +∆ψ = λψ log |ψ|2. (logNLS)

This equation is associated with the energy

H(ψ,ψ∗) := ∥∇ψ∥2
L2

+
λ

(2π)d

∫
Td

|ψ(t, x)|2
(
log |ψ(t, x)|2 − 1

)
dx ,

which is preserved for all time t ≥ 0, as equation (logNLS) can be written

i∂tψ =
∂H

∂ψ∗ (ψ,ψ
∗).

The L2 norm is also preserved along the dynamics, namely for all t ≥ 0,

∥ψ(t, ·)∥L2 = ∥ψ0∥L2 .
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Logarithmic Schrödinger equation

Theorem (C., Faou 2022)

Fix m ∈ Zd , −1
2
< λ− < λ+, ρ > 0, N > 1. ∃s0 > 0, C ≥ 1, Λ ⊂ [λ−, λ+]

of full measure such that ∀ s ≥ s0, ∀λ ∈ Λ, ∃ε0 > 0 such that if

∥e−im.xψ0 − ⟨e−im.xψ0⟩∥
Hs = ε ≤ ε0, and ∥ψ0∥

L2
= ρ,

then the solution ψ of (logNLS) with ψ(0, x) = ψ0(x) ∈ Us satis�es

∥e−im.xψ(t, · )− ρe iθ(t)∥
Hs ≤ Cε for t ≤ ε−N ,

and

|θ̇ − (m2 + 2λ log ρ)| ≤ Cε2.
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Sketch of the proof and limits

⇒ Stability analysis in Hs : strategy of Faou, Gauckler, Lubich (2013) for

cubic NLS.

Sketch of the proof :
▶ use of invariants of (logNLS) in order to reduce the problem,
▶ linearization of the logarithm around the plane wave,
▶ use of standard Birkho� normal theorems (Bambusi, Grébert 2006) to

conclude.

Limits :
▶ result holds for almost all λ,
▶ s0 can be arbitrary large.
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Numerics

We take

ψ0(x) =
1

1+ 0.2 cos(x)
.

Figure � Solution of equation (logNLS) with initial datum ψ0 (λ = 0.5).
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Numerics

We recall that

ψ(t, x) =
∑
n∈Z

ψn(t)e
inx .

Figure � Evolution of the actions |ψn|2 of the solution of equation (logNLS) with
initial datum ψ0 (λ = 0.5).
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Schrödinger-Langevin equation

For µ > 0, we now consider the Schrödinger-Langevin equation :

i∂tψ +∆ψ = λψ log |ψ|2 + µ

2i
ψ log

(
ψ

ψ∗

)
. (SL)

Only stationary plane wave solutions are the constants :

ν = ρe−2iλ log ρ/µ, ρ > 0.

Still preservation of the L2 norm.

Dissipation of energy ⇒ no normal form result available.
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Schrödinger-Langevin equation

Theorem (C., Faou 2022)

Let s > d
2
, λ > −1

2
, µ > 0 and ρ > 0. Then there exists ε0 > 0 such that,

if the initial datum satis�es ∥ψ0 − ⟨ψ0⟩∥
Hs

≤ ε0 and ∥ψ0∥L2 = ρ then the

solution of (SL) with ψ(0, .) = ψ0 ∈ Us satis�es for t ≥ 0,

∥ψ(t, .)− ρe−2iλ log ρ/µ∥
Hs ≤ Ce−αt(1+ βt),

where

(i) If µ < 2
√
1+ 2λ then α = µ

2
and β = 0.

(ii) If µ = 2
√
1+ 2λ then α = µ

2
and β = 1.

(iii) If µ > 2
√
1+ 2λ then α = µ

2
−
(
µ2

4
− 1− 2λ

) 1
2 ∈

(
0, µ

2

)
, and if there

exists n ≥ 2 such that µ2 = 4n2 + 8λn we have β = 1, and if this is

not the case, β = 0.
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Sketch of the proof

Scaling factor : if ψ is solution of (SL) with initial datum

ψ(0, x) = ψ0, then

κψ exp

(
2i
λ

µ
log κ

(
1− e−µt

))
is also a solution of (SL) with initial datum ψ(0, x) = κψ0. Thus it is

su�cient to prove the result for ρ = 1.

Elimination of the zero mode

ψ = e iθ(a+ w) with ⟨w⟩ = 0.

Preservation of the L2 norm + Parseval :

a =

√
1− ∥w∥2

L2
.

Note that we can also control θ in terms of a and w ⇒ ψ ≡ w .
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Sketch of the proof
Analytic development of the logarithm : On Us ,

log
(
1+

w

a

)
= −

∑
n≥1

1

n

(
−w

a

)n
. (3)

Linearization : we write w in Fourier basis, so

w =
∑
j ̸=0

wje
ij ·x .

Projecting on the j-th mode, the equation of motion for wj can be

written

i∂twj =
(
|j |2 + λ+

µ

2i

)
wj +

(
λ− µ

2i

)
w−j +

∂P
∂w j

(w ,w),

where

with P(w ,w) =
∑
r≥3

Pr (w ,w)

and Pr (w ,w) denotes a polynomial of degree r .

Plane waves stability on Td Schrödinger-Langevin equation Journée Ananum 21 / 31



Sketch of the proof
Analytic development of the logarithm : On Us ,

log
(
1+

w

a

)
= −

∑
n≥1

1

n

(
−w

a

)n
. (3)

Linearization : we write w in Fourier basis, so

w =
∑
j ̸=0

wje
ij ·x .

Projecting on the j-th mode, the equation of motion for wj can be

written

i∂twj =
(
|j |2 + λ+

µ

2i

)
wj +

(
λ− µ

2i

)
w−j +

∂P
∂w j

(w ,w),

where

with P(w ,w) =
∑
r≥3

Pr (w ,w)

and Pr (w ,w) denotes a polynomial of degree r .

Plane waves stability on Td Schrödinger-Langevin equation Journée Ananum 21 / 31



Sketch of the proof
Denoting Wj = (wj ,w−j)

T and n = |j |2 ≥ 1, we have

Ẇj = −iAnWj +O(∥W ∥2
L2
),

where

An =

(
n + λ+ µ

2i λ− µ
2i

−λ− µ
2i −n − λ+ µ

2i

)
.

In particular, the eigenvalues of the matrix −iAn are

−µ
2
± i

√
n2 + 2λn − µ2

4
.

We can distinguish three cases :

4n2 + 8λn − µ2 > 0 : in this case the eigenvalues are of the form

−µ
2
± iδn, with δn =

√
n2 + 2λn − µ2

4
> 0.
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Sketch of the proof

4n2 + 8λn − µ2 = 0 : in this case −µ
2
is a double eigenvalue.

The matrix An can be put under the Jordan form

P−1
n AnPn =

( µ
2i λ− µ

2i
0 µ

2i

)
.

4n2 + 8λn − µ2 < 0 : note that for given λ and µ, this situation
occurs only a �nite number of times, as when n becomes large,

n2 + 2λn goes to +∞. In this case the two eigenvalues are under for

the form −αn and −βn, with

αn =
µ

2
−
√
µ2

4
− n2 − 2λn, βn =

µ

2
+

√
µ2

4
− n2 − 2λn.
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Conclusion

To conclude (for instance in the simplest case µ < 2
√
1+ 2λ),

denoting V = P−1W in the system

i∂tV = DV + R(V ),

and U = e
µ
2
tV , we get that

i∂tU = D̃U + e
µ
2
tR(e−

µ
2
tV ),

with D̃ real and R at least quadratic.

In the end, comparison with the ODI

|ẏ | ≤ Me−
α
2
ty3/2,

where y(t) = ∥U(t, .)∥Hs . Uniformly bounded under the condition

y(0) < (α/M)2.
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Remarks

β = 1 : Jordan block in the reduced dynamics.

When λ is �xed, µ→ ∞, the damping rate

α =
2λ+ 1

µ
+O

(
1

µ3

)
goes to 0. Thus a larger damping coe�cient implies a slower

relaxation to the equilibrium (overdamping).

λ > −1
2
crucial. Numerical experiments for λ = −1

2
tend to show that

the solution converges to a non trivial quasi-periodic solution.
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Numerics

ψ0(x) =
1

1+ 0.2 cos(x)
.

Figure � Solution of equation (SL) with initial datum ψ0 (λ = 0.5, µ = 2).

Plane waves stability on Td Schrödinger-Langevin equation Journée Ananum 26 / 31



Numerics

Figure � Evolution of the actions of solution of equation (SL) with initial datum
ψ0 (λ = 0.5, µ = 2).
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Numerics

Figure � Evolution of the actions of solution of equation (SL) with initial datum
ψ0 (λ = 0.5, µ = 4).
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Numerics

Figure � Evolution of the actions of solution of equation (SL) with initial datum
ψ0 (λ = −0.5, µ = 2).
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Perspectives

Damped harmonic oscillator

i∂tψ +∆ψ = |x |2ψ +
µ

2i
ψ log

(
ψ

ψ∗

)
.

Other mass-preserving damping : linear damping

i∂tψ +∆ψ = |x |2ψ +
µ

2i

(
x · ∇ψ +

d

2
ψ

)
,

or Doebner-Goblin models

i∂tψ +∆ψ = iµ

(
∆ψ +

|∇ψ|2

|ψ|2
ψ

)
.

Damping for other dispersive PDEs (Klein-Gordon, KdV).
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Thanks for your attention !
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Sketch of the proof

Galilean invariance principle : if ψ is a solution, then

φ(t, x) = ψ(t, x − vt)e−i(|v |2t/2−v ·x)

is also a solution for every v ∈ Zd . Hence

νm(t, x +mt)e−i(|m|2t+m·x) = ρe−2iλt log ρ = ν0(t, x),

so we can restrict our attention to the case m = 0.

Scaling factor : if ψ is a solution to (logNLS), then

κψ(t, x)e2itλ log κ, κ > 0,

also solves (logNLS) with initial datum κψ0, so we can take

∥ψ(t, ·)∥
L2

= ∥ψ0∥
L2

= 1,

which means that we can consider only the case ρ = 1.



Sketch of the proof

Elimination of the zero mode

ψ = e iθ(a+ w) with ⟨w⟩ = 0.

Preservation of the L2 norm

a =

√
1− ∥w∥2

L2
.

Note that we can also control θ in terms of a and w :

θ̇ + µθ + 2λ log(a) =
1

a
Re⟨P(w ,w∗)⟩, (4)

Analytic development of the logarithm : On Us ,

log
(
1+

w

a

)
= −

∑
n≥1

1

n

(
−w

a

)n
. (5)



Sketch of the proof

The equation of motion for w can be written, for j ∈ Z∗,

i∂twj = (|j |2 + λ)wj + λw−j +
∂P
∂w j

(w ,w),

where

with P(w ,w) =
∑
r≥3

Pr (w ,w)

and Pr (w ,w) denotes a polynomial of degree r of the form

Pr (w ,w) =
∑

p+q=r

∑
(j ,ℓ)∈Zp×Zq

j1+...+jp−ℓ1−...−ℓq=0

Pk,ℓwj1 . . .wjpw ℓ1 . . .w ℓq .



Sketch of the proof

Diagonalization of the linear part Denoting Wj = (wj ,w−j)
T ,

Ẇj = −iA|j |2Wj +O(∥W ∥2
L2
),

where for n = |j |2 ≥ 1, we have

An =

(
n + λ λ
−λ −n − λ

)
.

Lemma

Let λ > −1/2. Then, for all n ≥ 1, the matrix An is diagonalized by a

2× 2 matrix Sn that is real symplectic and hermitian and has condition

number smaller than 2 :

S−1
n (−iAn)Sn =

(
Ωn 0

0 −Ωn

)
with Ωn = i

√
n2 + 2λn.



Conclusion

Non resonance condition and normal form Let r > 1,

∃α = α(r) > 0 s.t. for λ ∈ Λ there exists γ > 0, s.t. for all integers p,
q with p + q ≤ r and for all m = (m1, . . . ,mp) ∈ Np and

n = (n1, . . . , nq) ∈ Nq,

|Ωm1 + . . .+Ωmp − Ωn1 − . . .− Ωnq | ≥
γ

µ3(m, n)α
, (6)

except if the frequencies cancel pairwise. Here, µ3(m, n) denotes the
third-largest among the integers m1, . . . ,mp, n1, . . . , nq.

Condition to apply standard Birkho� normal theorems (Bambusi,

Grébert 2006).

Main di�erence with NLS (Faou, Gauckler, Lubich 2013)∣∣∣∣∣ Ωn =
√
n2 + 2λn (logNLS)

Ωn =
√
n2 + 2λρ2n (NLS) ρ = ∥ψ0∥

L2
.



Last change of variable Matrix S−1
n are real symplectic(

ξj
ξ−j

)
= S−1

n

(
wj

w−j

)
, n = |j |2 ≥ 1

New Hamiltonian system

i
d

dt
(ξj(t)) =

∂H̃

∂ξj

(
ξ(t), ξ(t)

)
H̃(ξ, ξ) = H0 + P =

∑
j ̸=0

ωj |ξj |2 + P(ξ, ξ),

ωj = Ωn =
√

n2 + 2λn for |j |2 = n ≥ 1

P analytic of degree 3 (+ zero momentum condition)



Logarithmic Schrödinger equation

Theorem

(Theorem 7.2 of Grébert 2007)
There exists a canonical transformation τ : V → U which puts H̃ = H0 + P
in normal form up to order N, i .e.,

H̃ ◦ τ = H0 + Z + R,

H0 =
∑

j∈Z ωj |ξj |2,
Z is a polynomial of degree N which commutes with all the

super-actions, namely {Z , Jn} = 0 for all n ≥ 1,

Jn(ξ, ξ̄) =
∑

|j |2=n |ξj |2.

R ∈ C∞(V,R) and ∥XR(ξ, ξ)∥Hs
≤ Cs∥ξ∥

N

Hs
for ξ ∈ V,

τ is close to the identity : ∥τ(ξ, ξ)− (ξ, ξ)∥
Hs

≤ Cs∥ξ∥
2

Hs
for all ξ ∈ V.
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