Framework 000000000

Conclusion 00

Inégalités de dispersion via le semi-groupe de la chaleur

Valentin Samoyeau,

Advisor: Frédéric Bernicot. Laboratoire de Mathématiques Jean Leray, Université de Nantes

January 28, 2016

3

イロト 不得 トイヨト イヨト

Framework 000000000 Results

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

- Schrödinger's equation
- Strichartz estimates in various settings

2 Framework

- Space of homogeneous type
- Heat semigroup
- Hardy and BMO spaces
- 3 Results
 - Reduction to L2-L2 estimates
 - From wave dispersion to Schrödinger dispersion
 - Applications
 - Weak wave dispersion

Conclusion

Perspectives

Framework 000000000

Results 000000000000000 Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction

- Schrödinger's equation
- Strichartz estimates in various settings

2 Framework

- Space of homogeneous type
- Heat semigroup
- Hardy and BMO spaces
- 3 Results
 - Reduction to L2-L2 estimates
 - From wave dispersion to Schrödinger dispersion
 - Applications
 - Weak wave dispersion

4) Conclusion

Perspectives

Introduction	Framework	Results	Conclusion
00 000	00000000	000000000000	00
Schrödinger's equation			

$$\begin{cases} i\partial_t u + \Delta u = F(u) \\ u(0, x) = u_0(x) \end{cases}, \quad t \in \mathbb{R}, \ x \in \mathbb{R}^d.$$
(NLS)

• Duhamel's formula:

$$u(t,x) = e^{it\Delta}u_0(x) - i \int_0^t e^{i(t-s)\Delta}F(u(s,x))ds.$$

Existence, uniqueness: Contraction principle.
 Relies on Strichartz estimates: ∀ 2 ≤ p, q ≤ +∞

$$\frac{2}{p} + \frac{d}{q} = \frac{d}{2} \Rightarrow \|e^{it\Delta}u_0\|_{L^p_t L^q_x} \lesssim \|u_0\|_{L^2}.$$
 (1)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	Framework	Results	Conclusion
00000	00000000	000000000000	00
Schrödinger's equation			

• Via a TT^* argument, interpolation with $\|e^{it\Delta}\|_{L^2 \to L^2} \lesssim 1$, and Hardy-Littlewood-Sobolev inequality (Keel-Tao), (1) reduces to $L^1 - L^\infty$ dispersion inequality:

$$\|e^{it\Delta}\|_{L^1\to L^\infty} \lesssim |t|^{-\frac{d}{2}}.$$
 (2)

- (2) can be obtained by a complexification of the heat semigroup (e^{t∆})_{t≥0}.
- In R^d we have an explicit formulation of the heat semigroup kernel:

$$p_t(x,y) = rac{1}{(4\pi t)^{rac{d}{2}}}e^{-rac{|x-y|^2}{4t}}$$

Introduction		
000000		
Schrödinger's equation		

Framework

Results 000000000000000 Conclusion

Strichartz estimates with loss of derivatives

$$\|e^{it\Delta}u_0\|_{L^p_t L^q_x} \lesssim \|u_0\|_{W^{s,2}}.$$

• Local-in-time Strichartz estimates

$$\|e^{it\Delta}u_0\|_{L^p(t\in[0,T],L^q_x)} \lesssim \|u_0\|_{W^{s,2}}.$$

Question:

What do we know outside of \mathbb{R}^d with the usual Laplacian Δ ?

Introduction Frame 00000 Strichartz estimates in various settings Results

Conclusion 00

- Outside of a smooth convex domain of ℝ^d with Laplace-Beltrami operator: global-in-time estimates with loss of ¹/_p derivatives [Burq-Gérard-Tzvetkov].
- Compact riemannian manifold: local-in-time estimates with loss of ¹/_p derivatives [Burq-Gérard-Tzvetkov].
- Asymptotically hyperbolic manifolds: local-in-time estimates without loss [Bouclet].
- Laplacian with a smooth potential, infinite manifolds with boundary with one trapped orbit: local-in-time estimates with $\frac{1}{p} + \varepsilon$ loss of derivatives [Christianson].

 Results

Conclusion 00

- Outside of a smooth convex domain of ℝ^d with Laplace-Beltrami operator: global-in-time estimates with loss of ¹/_p derivatives [Burq-Gérard-Tzvetkov].
- Compact riemannian manifold: local-in-time estimates with loss of ¹/_p derivatives [Burq-Gérard-Tzvetkov].
- Asymptotically hyperbolic manifolds: local-in-time estimates without loss [Bouclet].
- Laplacian with a smooth potential, infinite manifolds with boundary with one trapped orbit: local-in-time estimates with $\frac{1}{p} + \varepsilon$ loss of derivatives [Christianson].

Introduction Framew 00000 Strichartz estimates in various settings Results

Conclusion 00

- Outside of a smooth convex domain of ℝ^d with Laplace-Beltrami operator: global-in-time estimates with loss of ¹/_p derivatives [Burq-Gérard-Tzvetkov].
- Compact riemannian manifold: local-in-time estimates with loss of ¹/_p derivatives [Burq-Gérard-Tzvetkov].
- Asymptotically hyperbolic manifolds: local-in-time estimates without loss [Bouclet].
- Laplacian with a smooth potential, infinite manifolds with boundary with one trapped orbit: local-in-time estimates with $\frac{1}{p} + \varepsilon$ loss of derivatives [Christianson].

Introduction Frame 00000 Strichartz estimates in various settings Results

Conclusion 00

- Outside of a smooth convex domain of ℝ^d with Laplace-Beltrami operator: global-in-time estimates with loss of ¹/_p derivatives [Burq-Gérard-Tzvetkov].
- Compact riemannian manifold: local-in-time estimates with loss of ¹/_p derivatives [Burq-Gérard-Tzvetkov].
- Asymptotically hyperbolic manifolds: local-in-time estimates without loss [Bouclet].
- Laplacian with a smooth potential, infinite manifolds with boundary with one trapped orbit: local-in-time estimates with ¹/_p + ε loss of derivatives [Christianson].

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Remark: One cannot expect global-in-time estimates in a compact setting. Example of a constant initial data for the Torus: $t \rightarrow +\infty$

Example of a constant initial data for the Torus: $t \rightarrow +\infty$

$$\|e^{it\Delta}u_0=u_0\|_{L^{\infty}(\mathbb{T})}\leq C|t|^{-\frac{d}{2}}\|u_0\|_{L^1(\mathbb{T})}\Leftrightarrow 1\lesssim |t|^{-\frac{d}{2}}.$$

Theorem [Burq-Gérard-Tzvetkov, '04]

Let \mathcal{M} be a compact riemannian manifold of dimension d. If $\varphi \in C_0^{\infty}(\mathbb{R}_+)$ then for all $h \in]0, 1]$:

$$\|e^{it\Delta}\varphi(h^2\Delta)\|_{L^1\to L^\infty}\lesssim |t|^{-rac{d}{2}}, \quad |t|\lesssim h.$$

- Example of the sphere \mathbb{S}^3 : optimal loss of $\frac{1}{p}$ ([BGT]);
- By Sobolev embeddings, the condition

$$\frac{2}{p}+\frac{d}{q}=\frac{d}{2},$$

gives a straightforward loss of $\frac{2}{p}$.

Conclusion: The loss γ is interesting when $\gamma \leq \frac{2}{p}$.

Framework

Results 000000000000000 Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Introduction
 - Schrödinger's equation
 - Strichartz estimates in various settings

Framework

- Space of homogeneous type
- Heat semigroup
- Hardy and BMO spaces

3 Results

- Reduction to L2-L2 estimates
- From wave dispersion to Schrödinger dispersion
- Applications
- Weak wave dispersion

4) Conclusion

Perspectives

The space:

 (X, d, μ) is a metric measured space with μ satisfying a doubling property:

$$\forall x \in X, \ \forall r > 0, \ \mu(B(x,2r)) \le C\mu(B(x,r)). \tag{3}$$

Then there exists a homogeneous dimension d such that:

$$\forall x \in X, \forall r > 0, \forall \lambda \ge 1, \mu(B(x, \lambda r)) \lesssim \lambda^d \mu(B(x, r)).$$

Examples

Euclidean space \mathbb{R}^d , open sets of \mathbb{R}^d , smooth manifolds of dimension d, some fractals sets, Lie groups, Heisenberg group,...

Introduction	Framework	Results
000000	○●○○○○○○○	0000000000000
Heat semigroup		

The operator:

- *H* is a self-adjoint nonnegative operator, densely defined on $L^2(X)$.
- *H* generates a L^2 -holomorphic semigroup $(e^{-tH})_{t\geq 0}$ (Davies).
- The evolution problem we study is

$$\begin{cases} i\partial_t u + Hu = F(u) \\ u(0, x) = u_0(x) \end{cases}, x \in \mathbf{X}.$$

Remark: Semigroup structure $\Rightarrow \psi_m : x \mapsto x^m e^{-x}$ are easier to handle than $\varphi \in C_0^{\infty}$.

Framework

Conclusion

• Typical on-diagonal upper estimates:

$$orall t > 0, \ orall x \in X, \ 0 \leq p_t(x,x) \lesssim rac{1}{\mu(B(x,\sqrt{t}))}$$
 (DUE)

• Self-improve (Coulhon-Sikora) into full gaussian estimates:

$$\forall t > 0, \ \forall x, y \in X, \ 0 \le p_t(x, y) \lesssim \frac{1}{\mu(B(x, \sqrt{t}))} e^{-\frac{d(x, y)^2}{4t}}.$$
(UE)

• Davies-Gaffney estimates:

$$\forall t > 0, \ \forall E, F \subset X, \ \|e^{-tH}\|_{L^2(E) \to L^2(F)} \lesssim e^{-\frac{d(E,F)^2}{4t}}$$
 (DG)

• Remark:

$$(\mathsf{DUE}) \Rightarrow (\mathsf{UE}) \Rightarrow (\mathsf{DG}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Framework

Results

Conclusion

• Typical on-diagonal upper estimates:

$$\forall t > 0, \ \forall x \in X, \ 0 \le p_t(x, x) \lesssim rac{1}{\mu(B(x, \sqrt{t}))}$$
 (DUE)

• Self-improve (Coulhon-Sikora) into full gaussian estimates:

$$orall t > 0, \ orall x, y \in X, \ 0 \le p_t(x,y) \lesssim rac{1}{\mu(B(x,\sqrt{t}))}e^{-rac{d(x,y)^2}{4t}}.$$

$$({\sf UE})$$

• Davies-Gaffney estimates:

$$\forall t > 0, \ \forall E, F \subset X, \ \|e^{-tH}\|_{L^2(E) \to L^2(F)} \lesssim e^{-\frac{d(E,F)^2}{4t}} \quad (\mathsf{DG})$$

• Remark:

$$(\mathsf{DUE}) \Rightarrow (\mathsf{UE}) \Rightarrow (\mathsf{DG}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Framework

Results

Conclusion

• Typical on-diagonal upper estimates:

$$orall t > 0, \; orall x \in X, \; 0 \leq p_t(x,x) \lesssim rac{1}{\mu(B(x,\sqrt{t}))}$$
 (DUE)

• Self-improve (Coulhon-Sikora) into full gaussian estimates:

$$orall t > 0, \ orall x, y \in X, \ 0 \leq p_t(x,y) \lesssim rac{1}{\mu(B(x,\sqrt{t}))}e^{-rac{d(x,y)^2}{4t}}.$$
 (UE)

• Davies-Gaffney estimates:

$$\forall t > 0, \ \forall E, F \subset X, \ \|e^{-tH}\|_{L^2(E) \to L^2(F)} \lesssim e^{-\frac{d(E,F)^2}{4t}} \quad (\mathsf{DG})$$

• Remark:

$$(\mathsf{DUE}) \Rightarrow (\mathsf{UE}) \Rightarrow (\mathsf{DG}).$$

Framework

Conclusion

• Typical on-diagonal upper estimates:

$$orall t > 0, \; orall x \in X, \; 0 \leq p_t(x,x) \lesssim rac{1}{\mu(B(x,\sqrt{t}))}$$
 (DUE)

• Self-improve (Coulhon-Sikora) into full gaussian estimates:

$$orall t > 0, \ orall x, y \in X, \ 0 \leq p_t(x,y) \lesssim rac{1}{\mu(B(x,\sqrt{t}))}e^{-rac{d(x,y)^2}{4t}}.$$

$$({\sf UE})$$

• Davies-Gaffney estimates:

$$\forall t > 0, \ \forall E, F \subset X, \ \|e^{-tH}\|_{L^2(E) \to L^2(F)} \lesssim e^{-\frac{d(E,F)^2}{4t}} \quad (\mathsf{DG})$$

• Remark:

$$(\mathsf{DUE}) \Rightarrow (\mathsf{UE}) \Rightarrow (\mathsf{DG}).$$

Framework

Conclusion 00

Some cases where the previous estimates hold:

- (DUE): Δ on a domain with boundary conditions, semigroup generated by a self-adjoint operator of divergence form
 H = −div(A∇) with A a real bounded elliptic matrix on ℝ^d;
- (UE): H = −∑^d_{i=1}X²_i where X_i are vector fields satisfying Hörmander condition on a Lie group or a riemannian manifold with bounded geometry;
- (DG): most second order self-adjoint differential operators, Laplace-Beltrami on a riemannian manifold, Schrödinger operator with potential...

troduction	Framework	Re: oc
at semigroup		

He

Results

Conclusion 00

• **Question:** how to prove $L^1 - L^\infty$ dispersive estimates

$\|e^{itH}\psi_m(h^2H)\|_{L^1(X)\to L^\infty(X)}\lesssim |t|^{-rac{d}{2}}$?

• Answer: I don't know...

- Instead we prove $H^1 BMO$ estimates.
- **Remark:** The classical Hardy space (of Coifman-Weiss) H^1 and BMO (of John-Nirenberg) are not adapted to the semigroup setting;
- We use an abstract construction of Bernicot-Zhao to construct equivalent spaces.

Introduction 000000	Framework	Results 0000000000000
Heat semigroup		

$$\|e^{itH}\psi_m(h^2H)\|_{L^1(X)\to L^\infty(X)} \lesssim |t|^{-rac{d}{2}}$$
 ?

• Answer: I don't know...

- Instead we prove $H^1 BMO$ estimates.
- Remark: The classical Hardy space (of Coifman-Weiss) H¹ and BMO (of John-Nirenberg) are not adapted to the semigroup setting;

• We use an abstract construction of Bernicot-Zhao to construct equivalent spaces.

Introduction 000000	Framework	Results 000000000
Heat semigroup		

$$\|e^{itH}\psi_m(h^2H)\|_{L^1(X)\to L^\infty(X)}\lesssim |t|^{-rac{d}{2}}$$
?

- Answer: I don't know...
- Instead we prove $H^1 BMO$ estimates.
- Remark: The classical Hardy space (of Coifman-Weiss) H¹ and BMO (of John-Nirenberg) are not adapted to the semigroup setting;

• We use an abstract construction of Bernicot-Zhao to construct equivalent spaces.

Introduction 000000	Framework	Results 0000000000000
Heat semigroup		

$$\|e^{itH}\psi_m(h^2H)\|_{L^1(X)\to L^\infty(X)} \lesssim |t|^{-\frac{d}{2}}$$
?

- Answer: I don't know...
- Instead we prove $H^1 BMO$ estimates.
- **Remark:** The classical Hardy space (of Coifman-Weiss) H^1 and BMO (of John-Nirenberg) are not adapted to the semigroup setting;

 We use an abstract construction of Bernicot-Zhao to construct equivalent spaces.

Introduction	Framework	Results	
000000	00000000	0000000000000	
Heat semigroup			

$$\|e^{itH}\psi_m(h^2H)\|_{L^1(X)\to L^\infty(X)} \lesssim |t|^{-\frac{d}{2}}$$
?

- Answer: I don't know...
- Instead we prove $H^1 BMO$ estimates.
- Remark: The classical Hardy space (of Coifman-Weiss) H¹ and BMO (of John-Nirenberg) are not adapted to the semigroup setting;

• We use an abstract construction of Bernicot-Zhao to construct equivalent spaces.

Introduction Framework

Conclusion 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• For a ball Q of radius r > 0 we set

$$B_Q = (\mathrm{Id} - e^{-r^2H})^M \simeq \sum_{k=0}^M e^{-kr^2H};$$

• a is an atom associated with the ball Q if there is f_Q supported in Q with $\|f_Q\|_{L^2(Q)} \le \mu(Q)^{-\frac{1}{2}}$ such that

$$a=B_Q(f_Q);$$

$$h \in H^1 \Leftrightarrow h = \sum_i \lambda_i a_i$$

where a_i are atoms and $\sum_i |\lambda_i| < +\infty$;

• $\|h\|_{H^1} := \inf\{\sum_i |\lambda_i|, h = \sum_i \lambda_i a_i\}.$

Introduction	Framework
000000	0000000000
Hardy and BMO spaces	

Conclusion 00

• For a ball Q of radius r > 0 we set

$$B_Q = (\mathrm{Id} - e^{-r^2H})^M \simeq \sum_{k=0}^M e^{-kr^2H};$$

• a is an atom associated with the ball Q if there is f_Q supported in Q with $\|f_Q\|_{L^2(Q)} \le \mu(Q)^{-\frac{1}{2}}$ such that

 $a=B_Q(f_Q);$

$$h \in H^1 \Leftrightarrow h = \sum_i \lambda_i a_i$$

where a_i are atoms and $\sum_i |\lambda_i| < +\infty$;

• $\|h\|_{H^1} := \inf\{\sum_i |\lambda_i|, h = \sum_i \lambda_i a_i\}.$

Introduction Framework

۲

Results 000000000000000 Conclusion 00

• For a ball Q of radius r > 0 we set

$$B_Q = (\mathrm{Id} - e^{-r^2H})^M \simeq \sum_{k=0}^M e^{-kr^2H};$$

• a is an atom associated with the ball Q if there is f_Q supported in Q with $\|f_Q\|_{L^2(Q)} \le \mu(Q)^{-\frac{1}{2}}$ such that

 $a=B_Q(f_Q);$

$$h \in H^1 \Leftrightarrow h = \sum_i \lambda_i a_i$$

where a_i are atoms and $\sum_i |\lambda_i| < +\infty$;

• $\|h\|_{H^1} := \inf\{\sum_i |\lambda_i|, h = \sum_i \lambda_i a_i\}.$

Introduction Framework

۲

Conclusion 00

• For a ball Q of radius r > 0 we set

$$B_Q = (\mathrm{Id} - e^{-r^2H})^M \simeq \sum_{k=0}^M e^{-kr^2H};$$

• a is an atom associated with the ball Q if there is f_Q supported in Q with $\|f_Q\|_{L^2(Q)} \le \mu(Q)^{-\frac{1}{2}}$ such that

 $a=B_Q(f_Q);$

$$h \in H^1 \Leftrightarrow h = \sum_i \lambda_i a_i$$

where a_i are atoms and $\sum_i |\lambda_i| < +\infty$; • $||h||_{H^1} := \inf\{\sum_i |\lambda_i|, h = \sum_i \lambda_i a_i\}.$

Introduction 000000	Framework	Results 00000000000000
Hardy and BMO spaces		

• If $f \in L^{\infty}$ we set

$$\|f\|_{\mathrm{BMO}} = \sup_{Q} \left(\oint_{Q} |B_Q(f)|^2 d\mu \right)^{\frac{1}{2}};$$

 $\bullet\,$ The space ${\rm BMO}$ is defined as the closure

$$BMO := \overline{\{f \in L^{\infty} + L^2, \|f\|_{BMO} < +\infty\}},$$

for the BMO norm.

٠

$$H^1 \hookrightarrow L^1$$
 and $L^{\infty} \hookrightarrow BMO$.

Conclusion

Introduction	Framework
000000	000000000
Hardy and BMO spaces	

Results

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• If $f \in L^{\infty}$ we set

$$\|f\|_{\mathrm{BMO}} = \sup_{Q} \left(\oint_{Q} |B_Q(f)|^2 d\mu \right)^{\frac{1}{2}};$$

 $\bullet\,$ The space ${\rm BMO}$ is defined as the closure

$$\mathrm{BMO}:=\overline{\{f\in L^\infty+L^2,\ \|f\|_{\mathrm{BMO}}<+\infty\}},$$

for the BMO norm.

 $H^1 \hookrightarrow L^1$ and $L^\infty \hookrightarrow BM0$

Introduction	Framework
000000	0000000000
Hardy and BMO spaces	

Results

Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• If $f \in L^{\infty}$ we set

$$\|f\|_{\mathrm{BMO}} = \sup_{Q} \left(\oint_{Q} |B_Q(f)|^2 d\mu \right)^{\frac{1}{2}};$$

 $\bullet\,$ The space ${\rm BMO}$ is defined as the closure

$$\text{BMO} := \overline{\{f \in L^{\infty} + L^2, \ \|f\|_{\text{BMO}} < +\infty\}},$$

for the BMO norm.

۲

$$H^1 \hookrightarrow L^1$$
 and $L^{\infty} \hookrightarrow BMO$.

Introduction	Framework	Results
000000	000000000	000000000000
Hardy and BMO spaces		

The key property of H^1 and BMO is the interpolation theorem

Theorem (Bernicot, '09)

For all $heta \in (0,1)$, using interpolation notations we have

$$(L^2, H^1)_{\theta} = L^p \text{ and } (L^2, BMO)_{\theta} \hookrightarrow L^q.$$

with $p\in(1,2)$ and $q=p'\in(2,\infty)$ given by

$$\frac{1}{p} = \frac{1-\theta}{2} + \theta$$
 and $\frac{1}{q} = \frac{1-\theta}{2}$

Introduction 000000	Framework	Results 0000000000000
Hardy and BMO spaces		

The question we investigate is how to prove $H^1 - BMO$ dispersive estimates

$$\|e^{itH}\psi_m(h^2H)\|_{H^1\to BMO} \lesssim |t|^{-\frac{d}{2}}.$$

Remark: $e^{itH}\psi_m(h^2H) = (h^2H)^m e^{-zH}$ with $z = h^2 - it$.

- $|t| \leq 1$ (i.e. t independent of h) is difficult.
- |t| ≤ h² is straightforward by analytic continuation of (UE) (since Re(z) ≃ |z| ≥ |t|).
- h² ≤ |t| ≤ h is dealt by [BGT, '04] in the compact riemannian manifold setting (using pseudo-differential tools).

• We will treat the case $h^2 \leq |t| \leq h^{1+\varepsilon}$ (for all $\varepsilon > 0$).

Introduction	Framework	Results
000000	○○○○○○○●	000000000000
Hardy and BMO spaces		

The question we investigate is how to prove $H^1 - BMO$ dispersive estimates

$$\|e^{itH}\psi_m(h^2H)\|_{H^1\to BMO} \lesssim |t|^{-\frac{d}{2}}.$$

Remark: $e^{itH}\psi_m(h^2H) = (h^2H)^m e^{-zH}$ with $z = h^2 - it$.

- $|t| \leq 1$ (i.e. t independent of h) is difficult.
- |t| ≤ h² is straightforward by analytic continuation of (UE) (since Re(z) ≃ |z| ≥ |t|).
- h² ≤ |t| ≤ h is dealt by [BGT, '04] in the compact riemannian manifold setting (using pseudo-differential tools).

• We will treat the case $h^2 \leq |t| \leq h^{1+\varepsilon}$ (for all $\varepsilon > 0$).

Introduction	Framework	Results
000000	○○○○○○○●	0000000000000
Hardy and BMO spaces		

(日) (同) (三) (三) (三) (○) (○)

The question we investigate is how to prove $H^1 - BMO$ dispersive estimates

$$\|e^{itH}\psi_m(h^2H)\|_{H^1\to BMO} \lesssim |t|^{-\frac{d}{2}}.$$

Remark: $e^{itH}\psi_m(h^2H) = (h^2H)^m e^{-zH}$ with $z = h^2 - it$.

- $|t| \leq 1$ (i.e. t independent of h) is difficult.
- |t| ≤ h² is straightforward by analytic continuation of (UE) (since Re(z) ≃ |z| ≥ |t|).
- h² ≤ |t| ≤ h is dealt by [BGT, '04] in the compact riemannian manifold setting (using pseudo-differential tools).
- We will treat the case $h^2 \leq |t| \leq h^{1+\varepsilon}$ (for all $\varepsilon > 0$).

Introduction 000000	Framework	Results 0000000000000000
Hardy and BMO spaces		

The question we investigate is how to prove $H^1 - BMO$ dispersive estimates

$$\|e^{itH}\psi_m(h^2H)\|_{H^1\to BMO} \lesssim |t|^{-\frac{d}{2}}.$$

Remark: $e^{itH}\psi_m(h^2H) = (h^2H)^m e^{-zH}$ with $z = h^2 - it$.

- $|t| \leq 1$ (i.e. t independent of h) is difficult.
- |t| ≤ h² is straightforward by analytic continuation of (UE) (since Re(z) ≃ |z| ≥ |t|).
- h² ≤ |t| ≤ h is dealt by [BGT, '04] in the compact riemannian manifold setting (using pseudo-differential tools).

• We will treat the case $h^2 \leq |t| \leq h^{1+\varepsilon}$ (for all $\varepsilon > 0$).

Framework 000000000

Results

Conclusion 00

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Introduction
 - Schrödinger's equation
 - Strichartz estimates in various settings

2 Framework

- Space of homogeneous type
- Heat semigroup
- Hardy and BMO spaces

3 Results

- Reduction to L2-L2 estimates
- From wave dispersion to Schrödinger dispersion
- Applications
- Weak wave dispersion

Conclusion

Perspectives

Introduction 000000	Framework 000000000	
Reduction to L2-L2 estimates		

Results

Conclusion

Hypothesis $(H_m(A))$

An operator T satisfies Hypothesis $(H_m(A))$ if:

$$\forall r > 0, \ \|T\psi_m(r^2H)\|_{L^2(B) \to L^2(\widetilde{B})} \lesssim A\mu(B)^{\frac{1}{2}}\mu(\widetilde{B})^{\frac{1}{2}}, \quad (H_m(A))$$

for any two balls B, \tilde{B} of radius r.

Remarks:

- We intend to use hypothesis $(H_m(A))$ for $T = e^{itH}\psi_m(h^2H)$ and $A = |t|^{-\frac{d}{2}}$.
- Hypothesis $(H_m(A))$ is weaker than the $L^1 L^{\infty}$ estimate by Cauchy-Schwarz inequality.

Framework 000000000 Results

Conclusion 00

Reduction to L2-L2 estimates

Theorem 1 [Bernicot, S., '14]

Let T be a self-adjoint operator commuting with H. If T satisfies $(H_m(A))$ for $m \ge \frac{d}{2}$, then

 $\|T\|_{H^1\to \text{BMO}} \lesssim A.$

That theorem reduces the $H^1 - BMO$ estimates to microlocalized $L^2(B) - L^2(\widetilde{B})$ ones.

Moreover, if $\|\mathcal{T}\|_{L^2 \to L^2} \lesssim 1$ then we can interpolate to get

$$\|T\|_{L^p\to L^{p'}}\lesssim A^{\frac{1}{p}-\frac{1}{p'}}$$

 Introduction
 Framework

 000000
 00000000

 Reduction to L2-L2 estimates
 Entropy

Results

Conclusion

Ideas of the proof:

- Use the atomic structure of H^1 .
- Use an approximation of the identity well suited to our setting $(e^{-sH})_{s>0}$.

Summary of theorem 1

$$(H_m(A)) \Rightarrow H^1 \to \operatorname{BMO}$$
 and $L^p \to L^{p'}$ dispersive estimates

Framework

Results

Conclusion 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

From wave dispersion to Schrödinger dispersion

Wave propagator

For $f \in L^2$, we note $\cos(t\sqrt{H})f$ the unique solution at time t of the wave problem:

$$\partial_t^2 u + Hu = 0$$
$$u_{|t=0} = f$$
$$\partial_t u_{|t=0} = 0$$

The wave propagator is the map $f \mapsto \cos(t\sqrt{H})f$.

Framework

Results

Conclusion 00

From wave dispersion to Schrödinger dispersion

Finite speed propagation

For any disjoint open sets $U_1, U_2 \subset X$, and any $f_1 \in L^2(U_1)$, $f_2 \in L^2(U_2)$, we have:

$$orall 0 < t < d(U_1, U_2), < \cos(t\sqrt{H})f_1, f_2 >= 0.$$
 (4)

We have the equivalence (Coulhon-Sikora '06):

 $(DG) \Leftrightarrow (4).$

Remark: If $cos(t\sqrt{H})$ has a kernel K_t , (4) means that K_t is supported in the "light cone":

$$\mathrm{supp}\ K_t \subset \{(x,y) \in X^2,\ d(x,y) \leq t\}.$$

Introduction Framework

Results

Conclusion 00

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Assumption on the wave propagator

There exists $\kappa \in (0, \infty]$ and an integer ℓ such that for all $s \in (0, \kappa)$, for all r > 0 and any two balls B, \widetilde{B} of radius r

$$\|\cos(s\sqrt{H})\psi_{\ell}(r^{2}H)\|_{L^{2}(B)\to L^{2}(\widetilde{B})} \lesssim \left(\frac{r}{r+s}\right)^{\frac{d-1}{2}} \left(\frac{r}{r+|L-s|}\right)^{\frac{d+1}{2}}$$

where $L = d(B, \widetilde{B}).$

Remark: κ is linked to the geometry of the space X (its injectivity radius for example).

Framework 000000000 Results

Conclusion 00

From wave dispersion to Schrödinger dispersion

Theorem 2 [Bernicot, S. '14]

Under the previous assumption on the wave propagator, for all m ≥ max{d/2, l + [d-1/2]}:
If κ = +∞: e^{itH} satisfies (H_m(|t|^{-d/2})) for all t ∈ ℝ.
If κ < +∞: for all ε > 0 and h > 0 with |t| ≤ h^{1+ε} and all integer m' > 0, e^{itH}ψ_{m'}(h²H) satisfies (H_m(|t|^{-d/2})).

- In the first case we obtain global-in-time Strichartz estimates without loss of derivatives.
- In the second case we recover local-in-time Strichartz estimates with $\frac{1}{p} + \varepsilon$ loss of derivatives.

Ideas of the proof:

- Cauchy formula $\Rightarrow e^{-zH} = \int_0^{+\infty} \cos(s\sqrt{H}) e^{-\frac{s^2}{4z}} \frac{ds}{\sqrt{\pi z}}$ with $z = h^2 it;$
- Integrate by parts when s is small;
- Use assumption on $\cos(s\sqrt{H})$ when $s < \kappa$;
- Use the exponential decay of $e^{-\frac{s^2}{4z}}$ when s is large.

Summary of theorem 2

 $L^2(B) o L^2(\widetilde{B})$ dispersion for the wave propagator $\Rightarrow H_m(|t|^{-rac{d}{2}}).$

Conclusion 00

Introduction 000000 Applications Framework 000000000 Results

Conclusion 00

Some cases where we can check $L^2(B) \to L^2(\widetilde{B})$ dispersion for the wave propagator to apply Theorem 1 and 2 and recover Strichartz estimates:

Examples

- $X = \mathbb{R}^d$ with $H = -\Delta$ $(\kappa = +\infty)$;
- $X = \mathbb{R}^d$ with $H = -\operatorname{div}(A \nabla)$ where $A \in C^{1,1}$ $(\kappa < +\infty)$;
- Compact riemannian manifolds with Laplace-Beltrami operator (κ depends on the injectivity radius);
- Non-compact riemannian manifolds with bounded geometry (κ given by the geometry);
- Non-trapping asymptotically conic manifolds with $H = -\Delta + V$ ([Hassel-Zhang '15]).

Introduction 000000	Framework 00000000	Results	Conclusion	
Weak wave dispersion				

For the Laplacian $H = -\Delta$ inside a convex domain of dimension $d \ge 2$ in \mathbb{R}^d :

[Ivanovici-Lebeau-Planchon, 14]

$$\|\cos(s\sqrt{H})\psi_{\ell}(r^{2}H)\|_{L^{2}(B)\to L^{2}(\widetilde{B})}\lesssim \left(\frac{r}{s}\right)^{\frac{d-1}{2}}\left(\frac{r}{|L-s|}\right)^{\frac{d+1}{2}+\frac{1}{4}}.$$

In specific situations, complex phenomena seem to appear near the boundary of the light cone...

Introduction 000000	Framework 00000000	Results
Weak wave dispersion		

Weak assumption on the wave propagator

For all $s \in (0, 1)$, for all r > 0 and any two balls B, \widetilde{B} of radius r

$$\|\cos(s\sqrt{H})\psi_\ell(r^2H)\|_{L^2(B) o L^2(\widetilde{B})}\lesssim \left(rac{r}{r+s}
ight)^{rac{d-2}{2}}$$

.

No behaviour near the boundary of the light cone is assumed.

000000	
Weak wave dispersion	

Framework

Results

Conclusion

Theorem

Assume d > 1, $m \ge \lceil \frac{d}{2} \rceil$, and the previous weak assumption is satisfied, then for all balls B, \tilde{B} of radius r and all $\varepsilon > 0$:

$$e^{itH}\psi_{m'}(h^2H)$$
 satisfies $(H_m(t^{-\frac{d-2}{2}}h^{-2}))$

for $h^2 \leq t \leq h^{1+\varepsilon}$ and $m' \geq 0$.

Summary

Weak dispersion for the wave propagator \Rightarrow weak dispersion for the Schrödinger propagator.

Weak wave dispersion

Framework 000000000 Results

Conclusion 00

Theorem

Assume d > 1, $m \ge \lceil \frac{d}{2} \rceil$, and the previous weak assumption is satisfied, then for every $h^2 \le t \le h^{1+\varepsilon}$ and all $2 \le p \le +\infty$ and $2 \le q < +\infty$ satisfying

$$\frac{2}{p}+\frac{d-2}{q}=\frac{d-2}{2},$$

every solution $u(t,.) = e^{itH}u_0$ of the problem

$$\begin{cases} i\partial_t u + Hu = 0\\ u_{|t=0} = u_0 \end{cases},$$

satisfies local-in-time Strichartz estimates with loss of derivatives

$$\|u\|_{L^p([-1,1],L^q)} \lesssim \|u_0\|_{W^{\frac{1+\varepsilon}{p}+2(1-\frac{2}{q}),2}}.$$

Introduction 000000 Weak wave dispersion Framework 000000000 Results

Conclusion 00

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Remark on the loss of derivatives:

The loss is interesting when

$$rac{1+arepsilon}{p}+2(1-rac{2}{q})\leq rac{2}{p}.$$

Moreover

$$\frac{2}{p}+\frac{d-2}{q}=\frac{d-2}{2}.$$

Hence

$$d\geq \frac{8}{1-\varepsilon}+2.$$

If d > 10, one can find such an $\varepsilon \in (0, 1)$.

Framework 000000000

Results 000000000000000 Conclusion

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Introduction
 - Schrödinger's equation
 - Strichartz estimates in various settings
- 2 Framework
 - Space of homogeneous type
 - Heat semigroup
 - Hardy and BMO spaces
- 3 Results
 - Reduction to L2-L2 estimates
 - From wave dispersion to Schrödinger dispersion
 - Applications
 - Weak wave dispersion

Conclusion

Perspectives

Framework 000000000 Results

Conclusion

One thing to remember:

 $L^{2}(B) - L^{2}(\widetilde{B})$ dispersive estimates for the wave propagator \Downarrow $H^{1} - BMO$ dispersive estimates for the Schrödinger operator \Downarrow $L^{p}L^{q}$ Strichartz inequalities for the Schrödinger operator

Introduction 000000	Framework 000000000	Results 0000000000000	Conclusion ●○
Perspectives			

- A good understanding of the wave propagator in various settings will help to detect whereas the method can apply:
 - The proof of (DG) \Leftrightarrow (4) may allow us to show that gaussian upper bounds (UE) imply a dispersion for $\cos(s\sqrt{H})$;
 - Klainerman's commuting vector fields method may give a suitable L¹ − L[∞] dispersive estimates for cos(s√H) in various settings (mild assumption on the geometry of X, or H = −div(A∇) with no/minimal regularity on A);

- Find new examples where we can apply our method to derive Strichartz estimates in general settings;
- Perturbation of H with a potential V with no regularity.

Introduction 000000	Framework 000000000	Results 0000000000000	Conclusion ●○
Perspectives			

- A good understanding of the wave propagator in various settings will help to detect whereas the method can apply:
 - The proof of (DG) \Leftrightarrow (4) may allow us to show that gaussian upper bounds (UE) imply a dispersion for $\cos(s\sqrt{H})$;
 - Klainerman's commuting vector fields method may give a suitable L¹ − L[∞] dispersive estimates for cos(s√H) in various settings (mild assumption on the geometry of X, or H = −div(A∇) with no/minimal regularity on A);

- Find new examples where we can apply our method to derive Strichartz estimates in general settings;
- Perturbation of H with a potential V with no regularity.

Introduction	Framework	Results	Conclusion
000000	00000000	000000000000	●○
Perspectives			

- A good understanding of the wave propagator in various settings will help to detect whereas the method can apply:
 - The proof of (DG) \Leftrightarrow (4) may allow us to show that gaussian upper bounds (UE) imply a dispersion for $\cos(s\sqrt{H})$;
 - Klainerman's commuting vector fields method may give a suitable L¹ − L[∞] dispersive estimates for cos(s√H) in various settings (mild assumption on the geometry of X, or H = −div(A∇) with no/minimal regularity on A);

- Find new examples where we can apply our method to derive Strichartz estimates in general settings;
- Perturbation of H with a potential V with no regularity.

Introduction	Framework	Results	Conclusion
000000	00000000	000000000000	●○
Perspectives			

- A good understanding of the wave propagator in various settings will help to detect whereas the method can apply:
 - The proof of (DG) \Leftrightarrow (4) may allow us to show that gaussian upper bounds (UE) imply a dispersion for $\cos(s\sqrt{H})$;
 - Klainerman's commuting vector fields method may give a suitable L¹ − L[∞] dispersive estimates for cos(s√H) in various settings (mild assumption on the geometry of X, or H = −div(A∇) with no/minimal regularity on A);

- Find new examples where we can apply our method to derive Strichartz estimates in general settings;
- Perturbation of H with a potential V with no regularity.

Introduction	Framework	Results	Conclusion
000000	00000000	000000000000	●○
Perspectives			

- A good understanding of the wave propagator in various settings will help to detect whereas the method can apply:
 - The proof of (DG) \Leftrightarrow (4) may allow us to show that gaussian upper bounds (UE) imply a dispersion for $\cos(s\sqrt{H})$;
 - Klainerman's commuting vector fields method may give a suitable L¹ − L[∞] dispersive estimates for cos(s√H) in various settings (mild assumption on the geometry of X, or H = -div(A∇) with no/minimal regularity on A);

- Find new examples where we can apply our method to derive Strichartz estimates in general settings;
- Perturbation of H with a potential V with no regularity.

Framework 000000000 Results

Conclusion ○●

Thank you for your attention !