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Schrédinger’s equation

{ i0ru + Au = F(u) FeR. xR

u(0, x) = up(x)

@ Duhamel’s formula:
u(t,x) = e Bug(x) — i Ot e(t=5)AF(u(s,x))ds.
@ Existence, uniqueness: Contraction principle.
Relies on Strichartz estimates: V 2 < p,qg < +00
2 d d A

St—=-=e
p Ty T2 |
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Schrédinger’s equation

e Via a TT* argument, interpolation with ||e2| 2,2 < 1, and
Hardy-Littlewood-Sobolev inequality (Keel-Tao), (1) reduces
to L1 — L> dispersion inequality:

Nl

™ l1po S J]72. (2)

~

@ (2) can be obtained by a complexification of the heat
semigroup (e2)>0.
o In RY we have an explicit formulation of the heat semigroup

kernel:
1 _ xy?

e
(47t)2
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Schrédinger’s equation

@ Strichartz estimates with loss of derivatives
itA
e uollprg < Iluollws2

@ Local-in-time Strichartz estimates

itA
le" U0||Ln(te[0,T],Lj) < lluollws.2-

Question:
What do we know outside of R with the usual Laplacian A ?



Introduction
®00

Strichartz estimates in various settings

o Outside of a smooth convex domain of RY with
Laplace-Beltrami operator: global-in-time estimates with loss
of ,—1) derivatives [Burg-Gérard-Tzvetkov].
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Strichartz estimates in various settings

o Outside of a smooth convex domain of RY with
Laplace-Beltrami operator: global-in-time estimates with loss
of % derivatives [Burg-Gérard-Tzvetkov].

o Compact riemannian manifold: local-in-time estimates with
loss of % derivatives [Burg-Gérard-Tzvetkov].

@ Asymptotically hyperbolic manifolds: local-in-time estimates
without loss [Bouclet].

@ Laplacian with a smooth potential, infinite manifolds with
boundary with one trapped orbit: local-in-time estimates with
% + ¢ loss of derivatives [Christianson].
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Strichartz estimates in various settings

Remark: One cannot expect global-in-time estimates in a
compact setting.
Example of a constant initial data for the Torus: t —+ 400

. 4 -5
He:tAuO _ U0||L°°(T) < C|t| QHUOHLI(T) & 1<t 2.

Theorem [Burg-Gérard-Tzvetkov, '04]

Let M be a compact riemannian manifold of dimension d. If
¢ € C§°(R4) then for all h €]0,1]:

; _d
le* 2 o(hA) o S 1E172, [t S h.

~
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Strichartz estimates in various settings

e Example of the sphere S3: optimal loss of % ([BGTY));
@ By Sobolev embeddings, the condition

2 d d

p q 2

gives a straightforward loss of %.

Conclusion: The loss +y is interesting when v <

TN
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Space of homogeneous type

The space:
(X, d, ) is a metric measured space with p satisfying a doubling
property:

Vx € X, Vr >0, u(B(x,2r)) < Cu(B(x,r)). (3)

Then there exists a homogeneous dimension d such that:

Vx € X,¥r > 0,YA > 1, u(B(x, Ar)) < A u(B(x, r)).

Euclidean space RY, open sets of R?, smooth manifolds of
dimension d, some fractals sets, Lie groups, Heisenberg group,...
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Heat semigroup

The operator:
@ H is a self-adjoint nonnegative operator, densely defined on

L2(X).
o H generates a L?-holomorphic semigroup (e~ *);>o (Davies).

@ The evolution problem we study is

{ i0ru + Hu = F(u)

u(0, x) = up(x) ) XEX

Remark: Semigroup structure = ¥,,: x — x™e™ are easier to
handle than ¢ € C5°.
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Heat semigroup

@ Typical on-diagonal upper estimates:
1

VE>0, Vx e X, 0< pi(x,x) < ————  (DUE
RRTCTN:

@ Self-improve (Coulhon-Sikora) into full gaussian estimates:

1 d(x.y)?

VE>0, ¥,y €X, 0< pe(x,y) S ———— e .
1(B(x,1/1))
(UE)

@ Davies-Gaffney estimates:

_d(E.F)?

vVt >0, VE,F C X, He_tHHLQ(E)—)B(F) g e 4t (DG)

e Remark:
(DUE) = (UE) = (DG).
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Heat semigroup

Some cases where the previous estimates hold:

o (DUE): A on a domain with boundary conditions, semigroup
generated by a self-adjoint operator of divergence form
H = —div(AV) with A a real bounded elliptic matrix on R¥;
e (UE): H=— Zf’zl X2 where X; are vector fields satisfying
Hormander condition on a Lie group or a riemannian manifold
with bounded geometry;

@ (DG): most second order self-adjoint differential operators,
Laplace-Beltrami on a riemannian manifold, Schrodinger
operator with potential...
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Question: how to prove L} — [ dispersive estimates

, 4
€™ pm(PH) | 1) 1o (x) S1E72 2

Answer: | don't know...
Instead we prove H — BMO estimates.

Remark: The classical Hardy space (of Coifman-Weiss) H'
and BMO (of John-Nirenberg) are not adapted to the
semigroup setting;

We use an abstract construction of Bernicot-Zhao to
construct equivalent spaces.
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where a; are atoms and ) |\;| < +o0;
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Hardy and BMO spaces

@ For a ball @ of radius r > 0 we set

Bo = (Id — e_'zH)M ~ Z e_erH;
k=0

@ ais an atom associated with the ball Q if there is fg
supported in Q with [|fgll2(q) < ,u(Q)_% such that

a = Bo(fq);

heHlﬁh:Z)\;a;

where a; are atoms and ), |\j| < +o0;
o [[Allpr :=inf{3 0 [Ail, h =205 Aiai}.
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Hardy and BMO spaces
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Hardy and BMO spaces

o If f €L we set

1
2
IFlleno = sup (][ \Bo(f)|2du) ;
Q Q

@ The space BMO is defined as the closure

BMO := {f € L* + L2, ||[f||smo < +o0},

for the BMO norm.

H' < 1 and L*® < BMO.
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Hardy and BMO spaces

The key property of H* and BMO is the interpolation theorem

Theorem (Bernicot, '09)

For all 6 € (0,1), using interpolation notations we have

(L%, HY)g =[P and (L%, BMO)y — L9.
with p € (1,2) and g = p’ € (2, 0) given by

1 1-06 1 1-06
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Hardy and BMO spaces

The question we investigate is how to prove H! — BMO dispersive
estimates

, 4
€™ hm(h*H) |11 myo S [t 2.

Remark: e™y,,(h?H) = (PH)"e=2H with z = h* — it.

@ |t| <1 (i.e. tindependant of h) is difficult.
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Hardy and BMO spaces

The question we investigate is how to prove H! — BMO dispersive
estimates

, 4
€™ hm(h*H) |11 myo S [t 2.

Remark: e™y,,(h?H) = (PH)"e=2H with z = h* — it.

@ |t| <1 (i.e. tindependant of h) is difficult.

e |t| < h? is straightforward by analytic continuation of (UE)
(since Re(z) ~ |z| > |t|).

e h? < |t| < his dealt by [BGT, '04] in the compact riemannian
manifold setting (using pseudo-differential tools).

o We will treat the case h* < |t| < h'T= (for all € > 0).
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Reduction to L2-L2 estimates

Hypothesis (Hm(A))
An operator T satisfies Hypothesis (Hp(A)) if:

1 1
Vr>0, | T¢m(r2H)||L2(B)_>L2(§) S AuB)2u(B)2,  (Hm(A))

for any two balls B, B of radius .

Remarks:
o We intend to use hypothesis (Hn(A)) for T = e'™4),,(h*H)
and A= |t]7%.
e Hypothesis (Hn(A)) is weaker than the L1 — L™ estimate by
Cauchy-Schwarz inequality.
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Reduction to L2-L2 estimates

Theorem 1 [Bernicot, S., '14]

Let T be a self-adjoint operator commuting with H. If T satisfies
(Hm(A)) for m > 4, then

| Tl BMmo S A

That theorem reduces the H! — BMO estimates to microlocalized

L2(B) — L%(B) ones.
Moreover, if || T||;2_,;2 < 1 then we can interpolate to get

e

1_
H THLP—)LPI S Ap
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Reduction to L2-L2 estimates

Ideas of the proof:
@ Use the atomic structure of H1.

@ Use an approximation of the identity well suited to our setting
(eisH)s>0-

Summary of theorem 1

(Hm(A)) = H' — BMO and LP — LP" dispersive estimates.
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From wave dispersion to Schrédinger dispersion

Wave propagator

For f € L2, we note cos(tv/H)f the unique solution at time t of
the wave problem:

O?u+ Hu=0
U‘t:() = f
é)tth::O = C

The wave propagator is the map f — cos(tv/H)f.
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From wave dispersion to Schrédinger dispersion

Finite speed propagation

For any disjoint open sets Uy, U C X, and any f; € L?(U;),
f> € L2(Uy), we have:

Y0 < t < d(Uy, Uz), < cos(tVH)f,f >=0. (4)

We have the equivalence (Coulhon-Sikora '06):

(DG) & (4).

Remark: If cos(tv/H) has a kernel K;, (4) means that K; is
supported in the “light cone”:

supp K: C {(x,y) € X2, d(x,y) < t}.
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From wave dispersion to Schrédinger dispersion

Assumption on the wave propagator

There exists x € (0,00] and an integer £ such that for all
s € (0,k), for all r > 0 and any two balls B, B of radius r

d—1 d+1

||COS(S\/ﬁﬁW(rzH)”L2(B)—>L2(§)5< r ) | <;> |

r+s r+|L— s

where L = d(B, B).

Remark: & is linked to the geometry of the space X (its
injectivity radius for example).
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From wave dispersion to Schrédinger dispersion

Theorem 2 [Bernicot, S. '14]

Under the previous assumption on the wave propagator, for all
m > max{$,¢+ [451]}:
QO If Kk = +oo: e satisfies (Hm(|t\_g)) for all t € R.
Q If k < 4o0: forall € >0 and h > 0 with |t| < h'*€ and all
integer m" > 0, ™4, (h*H) satisfies (Hm(|t|_g)).

@ In the first case we obtain global-in-time Strichartz estimates
without loss of derivatives.

@ In the second case we recover local-in-time Strichartz
estimates with % + ¢ loss of derivatives.
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From wave dispersion to Schrodinger dispersion

Ideas of the proof:
o Cauchy formula = =" = [F*° cos(sv/H)e~
z=h%—jt:

o Integrate by parts when s is small;

@ Use assumption on cos(sv' H) when s < k;

52
@ Use the exponential decay of e™ 4 when s is large.

Summary of theorem 2

L?(B) — LZ(E) dispersion for the wave propagator = Hm(|t|—g)_
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Applications

Some cases where we can check L2(B) — L?(B) dispersion for the
wave propagator to apply Theorem 1 and 2 and recover Strichartz
estimates:

Examples
o X =R with H=—A (k = 4+00);
o X =R? with H = —div(AV) where A € C1! (k < +00);

@ Compact riemannian manifolds with Laplace-Beltrami
operator (x depends on the injectivity radius);

@ Non-compact riemannian manifolds with bounded geometry
(k given by the geometry);

@ Non-trapping asymptotically conic manifolds with
H = —A + V ([Hassel-Zhang '15]).
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Weak wave dispersion

For the Laplacian H = —A inside a convex domain of dimension
d>2in R

[lvanovici-Lebeau-Planchon, 14]

S

d+1 ;1
) 7 r R
|| cos(sV/H)ee(r H)‘|L2(B)—>L2(E) S (_) <|L - s|) '

In specific situations, complex phenomena seem to appear near the
boundary of the light cone...
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Weak wave dispersion

Weak assumption on the wave propagator

For all s € (0,1), for all r > 0 and any two balls B, B of radius r

d—1

r \ =z
| cos(S\/ﬁ)l/)e(sz)HL2(B)—>L2(§) S ( ) .

r+s

No behaviour near the boundary of the light cone is assumed.
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Weak wave dispersion

Theorem

Assume d > 1, m > [%] and the previous weak assumption is
satisfied, then for all balls B, B of radius r and all € > 0:

2

ety (R2H) satisfies (Hm(t~ 2" h~2))

for i < t < h'*¢ and m’ > 0.

Summary

| A\

Weak dispersion for the wave propagator = weak dispersion for
the Schrodinger propagator.

\
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Weak wave dispersion

Theorem

Assume d > 1, m > [%} and the previous weak assumption is
satisfied, then for every h?> < t < h'*¢ and all 2 < p < 400 and
2 < g < +oo satisfying

2 d-2 d—2

—_—t =,

p q 2

every solution u(t,.) = e™uy of the problem

I

{ i0.u+ Hu =0

satisfies local-in-time Strichartz estimates with loss of derivatives

| UHLP([—l,l],Lq) S UO” WHTE““*%)'T
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Weak wave dispersion

Remark on the loss of derivatives:
The loss is interesting when

1 2 2
+€+2(1**)§*
p q p
Moreover
2 d-2 d—2
4 ==
q 2
Hence
8
d>—+2.
l1—¢

If d > 10, one can find such an ¢ € (0,1).

O000e
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Conclusion

One thing to remember:

L[%(B) — L?(B) dispersive estimates for the wave propagator

4
H! — BMO dispersive estimates for the Schrodinger operator

4

LP[9 Strichartz inequalities for the Schrodinger operator
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@ A good understanding of the wave propagator in various
settings will help to detect whereas the method can apply:

e The proof of (DG) < (4) may allow us to show that gaussian
upper bounds (UE) imply a dispersion for cos(sv/H);

e Klainerman's commuting vector fields method may give a
suitable L1 — [°° dispersive estimates for cos(sv/H) in various
settings (mild assumption on the geometry of X, or
H = —div(AV) with no/minimal regularity on A);

@ Find new examples where we can apply our method to derive
Strichartz estimates in general settings;

@ Perturbation of H with a potential V' with no regularity.
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Thank you for your attention !
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