Diffraction par un obstacle élastique développement basse fréquence et applications à l'imagerie

Loïc Le Marrec

Séminaire d'Analyse Numérique, IRMAR

Jeudi 11 octobre 2007

J-P. Groby (CMAP, Polytechnique, Palaiseau - France) A. Wirgin (LMA, Marseille - France) C. Tsogka (Department of Mathematics, University of Chicago - USA)

Plan

Introduction

- Qu'est-ce qu'un os ?
- Caractérisation osseuse
- Choix du problème
- Un modèle de radius humain
- Position du problème
- Problème direct
- Problème inverse
- Conclusion

Introduction : Qu'est ce qu'un os?

- L'os est un tissus vivant (remodelage osseux) composé
 - d'une matrice solide : trabécule, fibres organiques de collagène
 - d'un milieu inorganique
- \Rightarrow Échelle microscopique : milieu inhomogène, anisotrope et poreux
- ⇒ Échelle macro/mesoscopique : milieu homogénéisé
- Deux types d'os
 - **•** os cortical (portion appendiculaire) : porosité 3 5%
 - \Rightarrow Modèle de solide élastique équivalent (Buchanan et al. 1998)
 - \Rightarrow Modèle de solide viscoélastique équivalent (Morochnik et al. 1996)
 - os spongieux (portion terminale) : porosité jusqu'à 90%
 - \Rightarrow Modèle porélastique (Biot 1962)

Introduction : Caractérisation osseuse

Pathologie : <u>ostéoporose</u>

- Déséquilibre du processus de remodelage
- Os moins dense, plus poreux, paroi plus fine
- Qu'est ce qui doit être mesuré ? paramètre d'intérêt :
 - Propriétés géométriques
 - Propriétés mécaniques
- Déterminer un modèle direct mathématiquement et physiquement admissible
 - Pour prédire la réponse osseuse in vitro et in vivo
 - Pour inverser des mesures (réelles ou simulées)
- Propriété du modèle :
 - Sensible aux paramètres d'intérêts
 - Méthode robuste, rapide (imagerie temps réelle en application clinique)

Introduction : Choix du problème

Radius humain. Tomographie aux rayons X (Bossy et al. 2003)

La zone appendiculaire d'un os long est sensible à l'ostéoporose qui s'y illustre par une réduction de l'épaisseur, une perte de densité et une légère augmentation de porosité.

- Milieu \Rightarrow modèle viscoélastique (os cortical)
- \square La section \Rightarrow déterminée par tomographie X
- **D** Les propriétés viscoélastiques \Rightarrow déterminée par sondage US
- Les tissus mous (autour) favorisent la progression d'ondes de compressions
- ⇒ Caractérisation US d'une section droite de la zone appendiculaire d'un radius
- ⇒ Modèle 2D, PSV

Introduction : Un modèle de radius humain

Cylindre circulaire : $r_{ext} = 6.0mm$ et $r_{int} = 2.56mm$

 Ω_j : milieux viscoélastiques équivalents, homogènes et isotropes ^a

	$ ho^j$	$\left(c_s^j\right)_R$	Q_s^j	$\left(c_{p}^{j} ight)_{R}$	Q_{p^j}
	$(kg \cdot m^{-3})$	$(m \cdot s^{-1})$		$(m \cdot s^{-1})$	
$\Omega_0 \equiv \Omega_2$	1030	200	100	1500	150
Ω_1	1850	1800	30	3050	50

^aE.L. Masen Ultrasonic shear wave properties of soft tissues and tissue-like materials JASA (1983)

Plan

- Introduction
- Position du problème
 - Direct
 - Inverse
- Problème direct
- Problème inverse
- Conclusion

Position du problème direct

Domaine fréquenciel

- Problème basse fréquence :
 - Propriétés moyennes
 - Forme de l'obstacle négligeable : tube circulaire
 - Sondage monochromatique
- Problème haute fréquence :
 - Propriétés locales
 - Forme de l'obstacle non négligeable
 - Sondage impulsionnel
- Mesures et simulations
 - Mesures simulées code FEM
 - Estimations analytiques

Position du problème inverse

Paramètres connus

- **Propriétés mécaniques de** Ω^0 et Ω^2
- Configuration de mesure : position, polarisation, fonction de forme de la source, position des récepteurs
- Paramètres plus ou moins connus
 - Géométrie, rayons internes et externes de l'obstacle : rayon X
- Paramètres inconnus
 - **Propriétés mécaniques de** Ω^1 :

 $\Rightarrow \rho^1$, $(c_S^1)_R$, $(c_P^1)_R$, Q_S^1 and Q_P^1

Plan

- Introduction
- Position du problème
- Problème direct
 - Mesures (F.E.M.)
 - Principe
 - Viscoélasticité
 - Formulation
 - Résultats numériques
 - Simulation
 - Approximation basse fréquence
- Problème inverse
- Conclusion

Mesures (F.E.M.) : Principe

Propagation d'onde dans un milieu viscoélastique Ω
 Problème 2D PSV (Groby J-P., Tsogka C. (2006))
 Formulation vitesse-contrainte, en temps

$$(\mathcal{P}_t) \begin{cases} \rho \frac{\partial v_l}{\partial t} - \sigma_{kl,k} = \rho f_l, & \text{in } \Omega \times]0, T[\\ \sigma_{kl} = \lambda \star_t \epsilon_{mm} \delta_{kl} + 2\mu \star_t \epsilon_{kl}, & \text{in } \Omega \times]0, T[\end{cases}$$

où \star_t est un opérateur de convolution temporelle

Les données

- $ho=
 ho(\mathbf{x})$: densité
- **9** $\mu = \mu(\mathbf{x}, t)$: module (complexe) de rigidité viscoélastique
- **9** $\lambda = \lambda(\mathbf{x}, t)$: module (complexe) d'élasticité viscoélastique

Mesures (F.E.M.) : Principe

Propagation d'onde dans un milieu viscoélastique Ω
 Problème 2D PSV (Groby J-P., Tsogka C. (2006))
 Formulation vitesse-contrainte, en temps

$$(\mathcal{P}_t) \begin{cases} \rho \frac{\partial v_l}{\partial t} - \sigma_{kl,k} = \rho f_l, & \text{in } \Omega \times]0, T[\\ \sigma_{kl} = \lambda \star_t \epsilon_{mm} \delta_{kl} + 2\mu \star_t \epsilon_{kl}, & \text{in } \Omega \times]0, T[\end{cases}$$

où \star_t est un opérateur de convolution temporelle

Les inconnues

- $v_l = v_l(\mathbf{x}, t), l = 1, 2$: vitesse particulaire
- $\sigma_{kl} = \sigma_{kl}(\mathbf{x}, t), k = 1, 2; l = 1, 2$: tenseur des contraintes
- $\epsilon_{kl} = \epsilon_{kl}(\mathbf{x}, t) = \frac{1}{2} \left(u_{k,l} + u_{l,k} \right)$: tenseur des déformations

Mesures (F.E.M.) : Principe

Propagation d'onde dans un milieu viscoélastique Ω
 Problème 2D PSV (Groby J-P., Tsogka C. (2006))
 Formulation vitesse-contrainte, en temps

$$(\mathcal{P}_t) \begin{cases} \rho \frac{\partial v_l}{\partial t} - \sigma_{kl,k} = \rho f_l, & \text{in } \Omega \times]0, T[\\ \sigma_{kl} = \lambda \star_t \epsilon_{mm} \delta_{kl} + 2\mu \star_t \epsilon_{kl}, & \text{in } \Omega \times]0, T[\end{cases}$$

où \star_t est un opérateur de convolution temporelle

Le problème

L'opérateur de convolution nécessite le stockage des données temporelles

Mesures (F.E.M.) : Viscoélasticité

Approche d'Emmerich et Korn (1987)

Il et μ sont approchés par des fonctions rationnelles (Maxwell généralisé) dans le domaine de Fourier :

$$\mu pprox \mu_{R} \left(1 + \sum_{n=1}^{N^{s}} \frac{i\omega y_{n}^{S}}{i\omega - \omega_{n}^{S}}
ight) \quad , \quad \Pi pprox \Pi_{R} \left(1 + \sum_{n=1}^{N^{p}} \frac{i\omega y_{n}^{P}}{i\omega - \omega_{n}^{P}}
ight)$$

Les données

• μ_R et Π_R : modules relaxés

$$\lim_{\omega \to 0} \mu(\omega) = \mu_R \qquad \qquad \lim_{\omega \to 0} \Pi(\omega) = \Pi_R$$

9 Q^s et Q^p : facteurs de qualités

$$Q^{s} = \left| \frac{\Re(\mu(\omega))}{\Im(\mu(\omega))} \right| \qquad Q^{p} = \left| \frac{\Re(\Pi(\omega))}{\Im(\Pi(\omega))} \right|$$

Mesures (F.E.M.) : Viscoélasticité

Approche d'Emmerich et Korn (1987)

Il et μ sont approchés par des fonctions rationnelles (Maxwell généralisé) dans le domaine de Fourier :

$$\mu \approx \mu_R \left(1 + \sum_{n=1}^{N^s} \frac{\mathsf{i}\omega y_n^S}{\mathsf{i}\omega - \omega_n^S} \right) \quad , \quad \Pi \approx \Pi_R \left(1 + \sum_{n=1}^{N^p} \frac{\mathsf{i}\omega y_n^P}{\mathsf{i}\omega - \omega_n^P} \right)$$

- Les inconnues
 - y_n^S et y_n^P : poids
 - ω_n^S et ω_n^P : fréquences caractéristiques
 - N^s et N^p : ordre de discrétisation

Déterminées de manière à satisfaire :

$$Q^{s} = \left| \frac{\Re(\mu(\omega))}{\Im(\mu(\omega))} \right| \qquad Q^{p} = \left| \frac{\Re(\Pi(\omega))}{\Im(\Pi(\omega))} \right|$$

Mesures (F.E.M.) : Formulation

- La loi de Hooke-Cauchy se décompose en deux termes
- Le système devient :

$$\Rightarrow (\mathcal{P}_t) \begin{cases} \rho \frac{\partial \mathbf{v}}{\partial t} - \nabla \cdot \boldsymbol{\sigma} = \rho \mathbf{f}, & \text{in } \Omega \times]0, T[\\ \mathbf{A}_{\mathbf{R}} \frac{\partial \boldsymbol{\sigma}}{\partial t} - \sum_{n=1}^{N} \mathbf{A}_{\mathbf{R}} \frac{\partial \boldsymbol{\eta}_{n}}{\partial t} = \mathbf{d}, & \text{in } \Omega \times]0, T[\\ \mathbf{A}_{\mathbf{n}} \frac{\partial \boldsymbol{\eta}_{n}}{\partial t} + \omega_{n} \mathbf{A}_{\mathbf{n}} \boldsymbol{\eta}_{n} = \mathbf{d}, & \text{in } \Omega \times]0, T[, \forall n \in [1, N] \end{cases}$$

- Les nouvelles données
 - **A**_n et **A**_R correspondent l'inverse de la matrice de Christoffel

Mesures (F.E.M.) : Formulation

- La loi de Hooke-Cauchy se décompose en deux termes
- Le système devient :

$$\Rightarrow (\mathcal{P}_t) \begin{cases} \rho \frac{\partial \mathbf{v}}{\partial t} - \nabla \cdot \boldsymbol{\sigma} = \rho \mathbf{f}, & \text{in } \Omega \times]0, T[\\ \mathbf{A}_{\mathbf{R}} \frac{\partial \boldsymbol{\sigma}}{\partial t} - \sum_{n=1}^{N} \mathbf{A}_{\mathbf{R}} \frac{\partial \boldsymbol{\eta}_{n}}{\partial t} = \mathbf{d}, & \text{in } \Omega \times]0, T[\\ \mathbf{A}_{\mathbf{n}} \frac{\partial \boldsymbol{\eta}_{n}}{\partial t} + \omega_{n} \mathbf{A}_{\mathbf{n}} \boldsymbol{\eta}_{n} = \mathbf{d}, & \text{in } \Omega \times]0, T[, \forall n \in [1, N] \end{cases}$$

Les nouvelles inconnues

- **9** η_n : tenseur de mémoire
- **d** : tenseur taux de déformation

Mesures (F.E.M.) : Résultats numériques

Plan

- Introduction
- Position du problème
- Problème direct
 - Mesures (F.E.M.)
 - Simulation
 - 🧢 Modèle
 - Position du problème
 - Viscoélasticité
 - Représentation des champs
 - Application des C.L.
 - Solution analytique exacte
 - Comparaison
 - Approximation basse fréquence
- Problème inverse
- Conclusion

Simulation : Modèle

Problème analytique

• Etude fréquentielle :
$$s(\mathbf{x},t) = \int_{-\infty}^{\infty} s(\mathbf{x},\omega) e^{-\mathbf{i}\omega t} d\omega$$

Problème PSV, potentiels élastiques :

$$\boldsymbol{u}(\mathbf{x},\omega) = \nabla \phi(\mathbf{x},\omega) + \boldsymbol{rot} \left(\psi(\mathbf{x},\omega)\mathbf{e}_3\right)$$

Source ponctuelle, fonction de Green du potentiel élastique : $G_0(\mathbf{x}, \mathbf{x^s}) = \frac{i}{4} H_0^{(1)}(k_p^0 ||\mathbf{x} - \mathbf{x^s}||)$

Simulation : Viscoélasticité

On utilise le modèle de Kjartanson (1979) Modèle à Q constant

$$\Pi(\omega) = \Pi_R \left(\frac{\mathrm{i}\omega}{\omega_R}\right)^{2\gamma_P} \qquad \mu(\omega) = \mu_R \left(\frac{\mathrm{i}\omega}{\omega_R}\right)^{2\gamma_S} \qquad 0 < \gamma < 1/2$$
$$Q_P = \left|\frac{\Re(\Pi(\omega))}{\Im(\Pi(\omega))}\right| \qquad Q_S = \left|\frac{\Re(\mu(\omega))}{\Im(\mu(\omega))}\right| \qquad \gamma = \frac{1}{\pi} \tan\left(\frac{1}{Q}\right)$$

Nombre d'onde

$$k_p(\omega) = \sqrt{\frac{\Pi(\omega)}{\rho}}$$
 $k_s(\omega) = \sqrt{\frac{\mu(\omega)}{\rho}}$

Modèle non physique !

$$k(\omega) = \frac{\omega}{v(\omega)} - i\alpha(\omega)\omega \qquad v(\omega) = \frac{\omega}{\Re(k)} \qquad \lim_{\omega \to 0} v(\omega) = 0$$
$$\alpha(\omega) = -\frac{\Im(k)}{\omega} \qquad \lim_{\omega \to +\infty} v(\omega) = +\infty$$

Simulation : Position du problème

 $\phi(\mathbf{x},\omega)$ et $\psi(\mathbf{x},\omega)$ satisfont

L'équation d'Helmholtz :

$$\begin{cases} \left(\triangle + k_p^j(\omega) \right) \phi^j = -f(\omega) \delta_{\mathbf{x}^{\mathbf{s}} - \mathbf{x}} & \mathbf{x} \in \Omega^j \\ \left(\triangle + k_s^j(\omega) \right) \psi^j = 0 & \mathbf{x} \in \Omega^j \end{cases}$$

Les conditions d'ondes sortantes

$$\begin{pmatrix} \left(\partial_r - ik_p^0(\omega)\right)\phi^0 = o(1/\sqrt{r}) \\ \left(\partial_r - ik_s^0(\omega)\right)\psi^0 = o(1/\sqrt{r}) \end{cases} \quad r \to \infty$$

Les conditions aux limites

$$\forall \mathbf{x} \in \Gamma_{ext} : \begin{cases} u_{\theta}^{1}(\mathbf{x},\omega) = u_{\theta}^{0}(\mathbf{x},\omega) \\ u_{r}^{1}(\mathbf{x},\omega) = u_{r}^{0}(\mathbf{x},\omega) \\ \sigma_{rr}^{1}(\mathbf{x},\omega) = \sigma_{rr}^{0}(\mathbf{x},\omega) \\ \sigma_{r\theta}^{1}(\mathbf{x},\omega) = \sigma_{r\theta}^{0}(\mathbf{x},\omega) \end{cases} \quad \forall \mathbf{x} \in \Gamma_{int} : \begin{cases} u_{\theta}^{2}(\mathbf{x},\omega) = u_{\theta}^{1}(\mathbf{x},\omega) \\ u_{r}^{2}(\mathbf{x},\omega) = u_{r}^{1}(\mathbf{x},\omega) \\ \sigma_{rr}^{2}(\mathbf{x},\omega) = \sigma_{rr}^{1}(\mathbf{x},\omega) \\ \sigma_{r\theta}^{2}(\mathbf{x},\omega) = \sigma_{r\theta}^{1}(\mathbf{x},\omega) \end{cases}$$

Simulation : Représentation des champs

$$\begin{aligned} \mathsf{Dans} \ \Omega_{0}^{+} & \begin{cases} \phi^{0} = & \phi^{0i} + \phi^{0d} \\ \phi^{0i} = & S(\omega) \frac{i}{4} \sum_{m=0}^{\infty} \epsilon_{m} J_{m}(k_{p}^{0}r) H_{m}^{(1)}(k_{p}^{0}r^{s}) \cos\left(m\left(\theta - \theta^{s}\right)\right) \\ \phi^{0d} = & \sum_{m=0}^{\infty} \epsilon_{m} a_{m}^{0} H_{m}^{(1)}(k_{p}^{0}r) \cos\left(m\left(\theta - \theta^{s}\right)\right) \\ \psi^{0d} = & \sum_{m=0}^{\infty} \epsilon_{m} b_{m}^{0} H_{m}^{(1)}(k_{s}^{s}r) \sin\left(m\left(\theta - \theta^{s}\right)\right) \\ \phi^{1} = & \sum_{m=0}^{\infty} \epsilon_{m} \left(a_{m}^{1} J_{m}(k_{p}^{1}r) + c_{m}^{1} H_{m}^{(1)}(k_{p}^{1}r)\right) \cos\left(m\left(\theta - \theta^{s}\right)\right) \\ \psi^{1} = & \sum_{m=0}^{\infty} \epsilon_{m} \left(b_{m}^{1} J_{m}(k_{s}^{1}r) + d_{m}^{1} H_{m}^{(1)}(k_{s}^{1}r)\right) \sin\left(m\left(\theta - \theta^{s}\right)\right) \\ \mathsf{Dans} \ \Omega_{2} & \begin{cases} \phi^{2} = & \sum_{m=0}^{\infty} \epsilon_{m} a_{m}^{2} J_{m}(k_{s}^{2}r) \cos\left(m\left(\theta - \theta^{s}\right)\right) \\ \psi^{2} = & \sum_{m=0}^{\infty} \epsilon_{m} b_{m}^{2} J_{m}(k_{s}^{2}r) \sin\left(m\left(\theta - \theta^{s}\right)\right) \end{cases} \end{aligned}$$

Simulation : Application des C.L.

On applique aux 8 C.L. les relations d'orthogonalité

$$\int_{\theta^s}^{\theta^s + \pi} \cos\left(m\left(\theta - \theta^s\right)\right) \cos\left(n\left(\theta - \theta^s\right)\right) \frac{d\theta}{\pi} = \frac{\delta_{mn}}{\epsilon_m}$$
$$\int_{\theta^s}^{\theta^s + \pi} \sin\left(m\left(\theta - \theta^s\right)\right) \sin\left(n\left(\theta - \theta^s\right)\right) \frac{d\theta}{\pi} = \frac{\delta_{mn}\left(1 - \delta_{m0}\right)}{2}$$

pour obtenir

$$\mathbf{P}_0 \mathbf{q}_0 = \mathbf{r}_0$$
 où $\mathbf{q}_0 = < a_0^0, a_0^1, c_0^1, a_0^2 >$

et

$$\mathbf{P}_n \mathbf{q}_n = \mathbf{r}_n$$
 ; $n = 1, 2, ...$ où $\mathbf{q}_n = < a_n^0, b_n^0, a_n^1, c_n^1, b_n^1, d_n^1, a_n^2, b_n^2 > 0$

Simulation : Application des C.L.

$$\mathbf{P}_{n} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} & p_{15} & p_{16} & 0 & 0 \\ p_{21} & p_{22} & p_{23} & p_{24} & p_{25} & p_{26} & 0 & 0 \\ p_{31} & p_{32} & p_{33} & p_{34} & p_{35} & p_{36} & 0 & 0 \\ p_{41} & p_{42} & p_{43} & p_{44} & p_{45} & p_{46} & 0 & 0 \\ 0 & 0 & p_{53} & p_{54} & p_{55} & p_{56} & p_{57} & p_{58} \\ 0 & 0 & p_{63} & p_{64} & p_{65} & p_{66} & p_{67} & p_{68} \\ 0 & 0 & p_{73} & p_{74} & p_{75} & p_{76} & p_{77} & p_{78} \\ 0 & 0 & p_{83} & p_{84} & p_{85} & p_{86} & p_{87} & p_{88} \end{pmatrix}$$

avec:

$$p_{41} = 2(\alpha_s^1)^2 n \rho^0 \left(H_n^{(1)}(\alpha_p^0) - \alpha_p^0 \dot{H}_n^{(1)}(\alpha_p^0) \right)$$
$$p_{68} = \beta_s^2 \dot{J}_n(\beta_s^2)$$

où :

$$\begin{aligned} \alpha_p^j &= k_p^j r_{ext} & \alpha_s^j &= k_s^j r_{ext} \\ \beta_p^j &= k_p^j r_{int} & \beta_s^j &= k_s^j r_{int} \end{aligned}$$

Simulation : Solution analytique exacte

On inverse numériquement le système linaire pour chaque mode.

 $P_n q_n = r_n$; n = 1, 2, ...

On s'interesse à la vitesse particulaire dans Ω_0^+

$$v_{r}^{0d}(\mathbf{x},\omega) = i\omega \sum_{m=0}^{\infty} \left(k_{p}^{0} a_{m}^{0} \epsilon_{m} \dot{H}_{m}^{(1)}(k_{p}^{0}r) + \frac{m}{r} b_{m}^{0} \epsilon_{m} H_{m}^{(1)}(k_{s}^{0}r) \right) \cos\left(m\left(\theta - \theta^{s}\right)\right)$$
$$v_{\theta}^{0d}(\mathbf{x},\omega) = i\omega \sum_{m=0}^{\infty} \left(\frac{-m}{r} a_{m}^{0} \epsilon_{m} H_{m}^{(1)}(k_{p}^{0}r) - k_{s}^{0} b_{m}^{0} \epsilon_{m} \dot{H}_{m}^{(1)}(k_{s}^{0}r) \right) \cos\left(m\left(\theta - \theta^{s}\right)\right)$$

On a donc résolu notre problème direct

exact

- à toute les fréquences
- seule hypothèse : géométrie circulaire

Simulation : Comparaison

Une FFT permet la comparaison avec les simulations FEM

- Mesures (FEM) : $\mathcal{V}^{0d}(\pi/2,\omega)$
- Simulation : $\mathbf{v}^{0d}(\pi/2,\omega)$

Module de la vitesse particulaire transversale (à gauche) et radiale (à droite)

Plan

- Introduction
- Position du problème
- Problème direct
 - Mesures (F.E.M.)
 - Simulation
 - Approximation basse fréquence
 - J Hypothèse
 - Algorithme
 - Solution
 - Validation
 - Conséquences
- Problème inverse

Conclusion

Approximation BF : Hypothèses

- - r_{ext} très petit
 - ω très grand
 - Approximation "tube circulaire" valide
- On suppose

$$Max(\alpha_{p}^{j}, \alpha_{s}^{j}, \beta_{p}^{i}, \beta_{s}^{i}) \ll 1 \qquad j = 0, 1; \quad i = 1, 2$$

Ce qui permet l'utilisation des expressions asymptotiques des fonctions cylindriques (Korneev (1993), Ying (1956))

$$J_m(\zeta) \sim \frac{1}{m!} \left(\frac{\zeta}{2}\right)^m$$

$$H_0^{(1)}(\zeta) \sim \frac{2\mathbf{i}}{\pi} \ln \zeta \quad ; \quad H_m^{(1)}(\zeta) \sim -\frac{\mathbf{i}(m-1)!}{\pi} \left(\frac{\zeta}{2}\right)^{-m} \quad ; \ \zeta \to 0$$

Approximation BF : Algorithme

On développe \mathbf{P}_m , \mathbf{q}_m et \mathbf{r}_m en puissance de $\chi = k_p^0 r_{ext}$

$$\mathbf{P}_{m}(\chi) = \sum_{j=0}^{\infty} \mathbf{P}_{m}^{(j)} \chi^{j} , \qquad \mathbf{P}_{m}^{(j)} = \frac{1}{j!} \left. \frac{\partial^{j}}{\partial \chi^{j}} \mathbf{P}_{m}(\chi) \right|_{\chi=0}$$
$$\mathbf{q}_{m}(\chi) = \sum_{j=0}^{\infty} \mathbf{q}_{m}^{(j)} \chi^{j} , \qquad \mathbf{r}_{m}(\chi) = \sum_{j=0}^{\infty} \mathbf{r}_{m}^{(j)} \chi^{j}$$

On exprime le système pour divers ordres de χ

$$\sum_{n=0}^{l} \mathbf{P}_{m}^{(l-n)} \mathbf{q}_{m}^{(n)} = \mathbf{r}_{m}^{(l)} \quad ; \quad l = 0, 1, 2, \dots$$

Résolution itérative

$$\mathbf{q}_{m}^{(0)} = \left(\mathbf{P}_{m}^{(0)}\right)^{-1} \mathbf{r}_{m}^{(0)}$$

$$\mathbf{q}_{m}^{(l)} = \left(\mathbf{P}_{m}^{(l)}\right)^{-1} \left[\mathbf{r}_{m}^{(l)} - \sum_{n=0}^{l-1} \mathbf{P}_{m}^{(l-n)} \mathbf{q}_{m}^{(n)}\right] \quad ; \quad l = 0, 1, 2, \dots$$

Approximation BF : Solution

On aboutit aux expressions modales aux ordres inférieurs :

$$a_{0}^{0} = \tilde{a}_{0}^{0} \chi^{2} + O(\chi^{4}) \qquad a_{m>1}^{0} = O(\chi^{4})$$
$$a_{1}^{0} = \tilde{a}_{1}^{0} \chi^{2} + O(\chi^{4}) \qquad b_{m>1}^{0} = O(\chi^{4})$$

ОÙ

$$\begin{split} \tilde{a}_{0}^{0} &= \mathcal{S}_{0}(\omega, k_{p}^{0}, r^{s}) \times \mathcal{M}_{0}(\Lambda^{j}, \mu^{j}, e) \\ \tilde{a}_{1}^{0} &= \mathcal{S}_{1}(\omega, k_{p}^{0}, r^{s}) \times \mathcal{M}_{1}(\rho^{j}, e) \\ \tilde{b}_{1}^{0} &= \mathcal{S}_{1}(\omega, k_{p}^{0}, r^{s}) \times \mathcal{M}_{1}(\rho^{j}, e) \times \sqrt{\frac{\Pi_{R}^{0}}{\mu_{R}^{0}}} \end{split} \qquad \Lambda^{j} = \Pi^{j} - \mu^{j} = \lambda^{j} + \mu^{j} \\ e &= \frac{r_{int}}{r_{ext}} \end{split}$$

ΟÙ

$$\begin{split} \mathcal{S}_{m}(\omega,k_{p}^{0},r^{s}) &= -\frac{\pi S(\omega)H_{m}^{(1)}\left(k_{p}^{0}r^{s}\right)}{16\epsilon_{m}} \\ \mathcal{M}_{0}(\Lambda^{j},\mu^{j},e) &= \frac{\left(\Lambda^{1}-\Lambda^{2}\right)\left(\Lambda^{0}+\mu^{1}\right)e^{2}+\left(\Lambda^{0}-\Lambda^{1}\right)\left(\Lambda^{2}+\mu^{1}\right)}{\left(\Lambda^{1}-\Lambda^{2}\right)\left(\mu^{0}-\mu^{1}\right)e^{2}+\left(\Lambda^{1}+\mu^{0}\right)\left(\Lambda^{2}+\mu^{1}\right)} \\ \mathcal{M}_{1}(\rho^{j},e) &= \frac{\left(\rho^{2}-\rho^{1}\right)e^{2}+\rho^{1}-\rho^{0}}{\rho^{0}} \end{split}$$

1.5

Approximation BF : Validation

 $||a_0^0||$, $||a_1^0||$, $||b_1^0||$ exacts et approchés.

La méthode est valide pour $\chi < 0.1$, soit $\alpha_s^1 < 7.5$!!

Approximation BF : Conséquences

- Potentiel de champ lointain : Signature du diffuseur soumis à une onde plane (P) en champ lointain
 - Dans le cas général

$$\phi^{0d}(\mathbf{x},\omega) = \sqrt{\frac{2}{\pi k_p^0 r}} e^{i\left(k_p^0 r - \frac{\pi}{4}\right)} f_{p \to p}(\theta,\omega) \quad ; \quad \psi^{0d}(\mathbf{x},\omega) = \sqrt{\frac{2}{\pi k_s^0 r}} e^{i\left(k_s^0 r - \frac{\pi}{4}\right)} f_{p \to s}(\theta,\omega)$$
$$f_{p \to p}(\theta,\omega) = \sum_{m=0}^{\infty} \epsilon_n a_m^0 \cos\left(m(\theta - \theta^s)\right) \quad ; \quad f_{p \to s}(\theta,\omega) = \sum_{m=0}^{\infty} \epsilon_n b_m^0 \cos\left(m(\theta - \theta^s)\right)$$

Dans le cas BF

$$\lim_{\omega \to 0} f_{p \to p}(\theta, \omega) = \mathcal{M}_0(\Lambda^j, \mu^j, e) + 2\mathcal{M}_1(\rho^j, e) \cos(\theta - \theta^s)$$
$$\lim_{\omega \to 0} f_{p \to s}(\theta, \omega) = 2\sqrt{\frac{\Pi^0}{\mu^0}} \mathcal{M}_1(\rho^j, e) \cos(\theta - \theta^s)$$

Approximation BF : Conséquences

Cas viscoélastique :
 On a

$$\lim_{\omega \to 0} \Pi(\omega) = \Pi_R$$
 Donc :

$$\mathcal{M}_0(\Lambda^j,\mu^j,e) = \frac{\left(\Lambda^1 - \Lambda^2\right)\left(\Lambda^0 + \mu^1\right)e^2 + \left(\Lambda^0 - \Lambda^1\right)\left(\Lambda^2 + \mu^1\right)}{\left(\Lambda^1 - \Lambda^2\right)\left(\mu^0 - \mu^1\right)e^2 + \left(\Lambda^1 + \mu^0\right)\left(\Lambda^2 + \mu^1\right)} \xrightarrow[\omega \to 0]{} \mathcal{M}_0(\Lambda^j_R,\mu^j_R,e)$$

- Seules les grandeurs relaxées entrent en compte
- L'atténuation / dispersion n'intervient pas
- Comportement élastique équivalent
- Résultat propre au modèle viscoélastique choisi

Approximation BF : Conséquences

Homogénéisation

Cylindre élastique homogène

$$\mathcal{M}_0(\Lambda^j, \mu^j) = \frac{\left(\Lambda^0 - \Lambda^1\right)}{\left(\mu^0 + \Lambda^1\right)}$$
$$\mathcal{M}_1(\rho^j) = \frac{\rho^1 - \rho^0}{\rho^0}$$

Cylindre élastique homogène équivalent :

$$\Lambda^{1}|_{eq} = \frac{\Lambda^{1}(\mu^{1} + \Lambda^{2}) - e^{2}\mu^{1}(\Lambda^{1} + \Lambda^{2})}{\mu^{1} + \Lambda^{2} + e^{2}(\Lambda^{1} - \Lambda^{2})}$$
$$\rho^{1}|_{eq} = (1 - e^{2})\rho^{1} + e^{2}\rho^{2}$$

Plan

- Introduction
- Position du problème
- Problème direct
- Problème inverse
 - Inversion basse fréquence
 - Principe
 - Analyse
 - Reconstruction
 - Inversion haute fréquence

Conclusion

Inversion BF : Principe

Mesures (F.E.M.) enregistrée sur un demi cercle de rayon r^m :

$$\mathcal{V}_r^{0d}(r^m, heta, \omega)$$
 et $\mathcal{V}_{ heta}^{0d}(r^m, heta, \omega)$

Exploitation des relations d'orthogonalité

$$\begin{split} \mathcal{I}_{0}^{r}(r^{m},\omega) &= \int_{0}^{\pi} \mathcal{V}_{r}^{0d}(r^{m},\theta,\omega) \frac{d\theta}{\pi} \\ \mathcal{I}_{1}^{r}(r^{m},\omega) &= \int_{0}^{\pi} \mathcal{V}_{r}^{0d}(r^{m},\theta,\omega) \cos\left(\theta - \theta^{s}\right) \frac{d\theta}{\pi} \\ \mathcal{I}_{1}^{r}(r^{m},\omega) &= \int_{0}^{\pi} \mathcal{V}_{r}^{0d}(r^{m},\theta,\omega) \cos\left(\theta - \theta^{s}\right) \frac{d\theta}{\pi} \\ \mathcal{I}_{1}^{t}(r^{m},\omega) &= \int_{0}^{\pi} \mathcal{V}_{\theta}^{0d}(r^{m},\theta,\omega) \sin\left(\theta - \theta^{s}\right) \frac{d\theta}{\pi} \\ \approx \mathrm{i}\omega \left(\frac{-1}{r^{m}}a_{1}^{0}H_{1}^{(1)}(k_{p}^{0}r^{m}) - k_{s}^{0}b_{1}^{0}\dot{H}_{1}^{(1)}(k_{s}^{0}r^{m})\right) \end{split}$$

Inversion BF : Principe

On définie le changement de variable

$$\begin{aligned} a_0^0 &\longrightarrow \chi^2 \mathcal{S}_0(\omega, k_p^0, r^s) M_0 \\ a_1^0 &\longrightarrow \chi^2 \mathcal{S}_1(\omega, k_p^0, r^s) M_1 \\ a_1^0 &\longrightarrow \chi^2 \mathcal{S}_1(\omega, k_p^0, r^s) M_1' \end{aligned}$$

Soit le problème

$$\begin{split} \mathcal{I}_{0}^{r}(r^{m},\omega) &= \mathrm{i}\omega\chi^{2}\mathcal{S}_{0}(\omega,k_{p}^{0},r^{s})\left(M_{0}k_{p}^{0}\dot{H}_{0}^{(1)}(k_{p}^{0}r^{m})\right) \\ \mathcal{I}_{1}^{r}(r^{m},\omega) &= \mathrm{i}\omega\chi^{2}\mathcal{S}_{1}(\omega,k_{p}^{0},r^{s})\left(k_{p}^{0}M_{1}\dot{H}_{1}^{(1)}(k_{p}^{0}r^{m}) + \frac{1}{r^{m}}M_{1}^{\prime}H_{1}^{(1)}(k_{s}^{0}r^{m})\right) \\ \mathcal{I}_{1}^{t}(r^{m},\omega) &= \mathrm{i}\omega\chi^{2}\mathcal{S}_{1}(\omega,k_{p}^{0},r^{s})\left(\frac{-1}{r^{m}}M_{1}H_{1}^{(1)}(k_{p}^{0}r^{m}) - k_{s}^{0}M_{1}^{\prime}\dot{H}_{1}^{(1)}(k_{s}^{0}r^{m})\right) \end{split}$$

Que l'on inverse, pour déterminer M_0 , M_1 et M'_1

Inversion BF : Analyse

On obtient par passage à la limite :

$$\lim_{\omega \to 0} M_0 = \mathcal{M}_0(\Lambda^j, \mu^j, e)$$
$$\lim_{\omega \to 0} M_1 = \lim_{\omega \to 0} M_1' \sqrt{\frac{\mu_R^0}{\Pi_R^0}} = \mathcal{M}_1(\rho^j, e)$$

Solution Remarque (1) : Type d'inversion

- le problème inverse est réalisé sans faire appel de manière itérative à un modèle direct
- il ne sert à rien de sur-déterminer le système

Inversion BF : Analyse

On obtient par passage à la limite :

$$\lim_{\omega \to 0} M_0 = \mathcal{M}_0(\Lambda^j, \mu^j, e)$$
$$\lim_{\omega \to 0} M_1 = \lim_{\omega \to 0} M_1' \sqrt{\frac{\mu_R^0}{\Pi_R^0}} = \mathcal{M}_1(\rho^j, e)$$

Remarque (2) : Problème mal posé

- seules deux grandeurs peuvent être déterminée
- on ne peut déterminer les propriétés de l'obstacle sans a priori
- plusieurs obstacles peuvent fournirent la même image

Les grandeurs reconstruites forment une *image BF* de l'obstacle.

Inversion BF : Analyse

On obtient par passage à la limite :

$$\lim_{\omega \to 0} M_0 = \mathcal{M}_0(\Lambda^j, \mu^j, e)$$
$$\lim_{\omega \to 0} M_1 = \lim_{\omega \to 0} M_1' \sqrt{\frac{\mu_R^0}{\Pi_R^0}} = \mathcal{M}_1(\rho^j, e)$$

- Remarque (3) : Analyse de sensibilité, découplage des grandeurs d'élasticité et de densité.
 - Une erreur d'a priori sur Λ^1 ou μ^1 ne perturbe pas l'estimation de ρ^1
 - Une erreur d'a priori sur ρ^1 ne perturbe pas l'estimation de Λ^1 ou μ^1
 - Une erreur d'a priori sur l'épaisseur perturbe l'ensemble des estimations

Inversion BF : Reconstruction

Mesures (F.E.M.) enregistrée sur un demi cercle de rayon r^m :

 $\mathcal{V}_r^{0d}(r^m, \theta, \omega)$ et $\mathcal{V}_{\theta}^{0d}(r^m, \theta, \omega)$

Plan

- Introduction
- Position du problème
- Problème direct
- Problème inverse
 - Inversion basse fréquence
 - Inversion haute fréquence
- Conclusion

Inversion HF : Principe

Reconstruction des autres inconnues par optimisation

- A priori (BF) : *e*, ρ^1 , \mathcal{M}_0 et $\Lambda^1_R = f(\mathcal{M}_0, \mu^1_R, e)$
- \checkmark Inconnues : $au = \{Q_P^1, Q_S^1, \mu_R^1\}$
- Mesures (F.E.M.) :

Fonction coût

- $\mathcal{V}_r^{0d}(r^m,\theta,\omega) \qquad \text{et} \qquad \mathcal{V}_\theta^{0d}(r^m,\theta,\omega) \qquad \mathbf{50kHz} \leq \mathbf{f} \leq \mathbf{250kHz}$
- Estimations (analytiques) :
 $v_r^{0d}(r^m, \theta, \omega)$ et $v_{\theta}^{0d}(r^m, \theta, \omega)$ 0.5 $\leq \chi \leq 3$
 - $\mathcal{F}(\boldsymbol{\tau}) = \frac{\sum_{\omega} \sum_{\theta} \left| \sqrt{(\mathcal{V}_r^{0d})^2 + (\mathcal{V}_{\theta}^{0d})^2} \sqrt{(v_r^{0d})^2 (\boldsymbol{\tau}) + (v_{\theta}^{0d})^2 (\boldsymbol{\tau})} \right|}{\sum_{\omega} \sum_{\theta} \left| \sqrt{(\mathcal{V}_r^{0d})^2 + (\mathcal{V}_{\theta}^{0d})^2} \right|}$

Inversion HF : Exemples de fonctions cout

Cost Function, f=100kHz, Σ_{θ}

Fonctions coût discontinues pour les facteurs de qualités Mauvais choix de fonctions coût Travail en cours ...

Inversion HF : Résultats finaux

Minimisation de la fonction cout par lsqnonlin (matlab).

Paramètres	Val.	Est.	Erreur	
$\rho^1 kg.m^{-3}$	1850	1864	0.8%	
$\left(\left(c_p^1 \right)_R m.s^{-1} \right)$	3050	3288	7.8%	
Q_p^1	50	?	?	
$(c_s^1)_R m.s^{-1}$	1800	1782	-0.9%	
Q_s^1	30	?	?	

Conclusion

- Un modèle de réponse viscoélastique d'un tube sollicité par une onde cylindrique de compression a été présenté. Ce modèle peut être généralisé à
 - d'autres géométries canoniques : sphère, cylindre plein.
 - d'autres sources : ondes planes, onde incidente de cisaillement, problème SH
 - J d'autres milieux : visco-thermo-élastique, acoustique
- Exploitation dans le cadre de l'inversion
 - On met en valeur le caractère mal posé du problème inverse
 - Seulement deux paramètres du milieu peuvent être reconstruit.
 - On ne peut reconstruire que les grandeurs relaxées.
 - Aucune grandeur physique ne peut être déterminée sans introduire d'a priori.

Conclusion

Développement

- Mieux traiter le problème haute fréquence.
- Comparer avec des résultats provenant d'un modèle de poutre.
- Exploitation dans le cadre de l'homogénéisation (Independant Scattering Approximation).