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Introduction
Geometric equations

We are interested in geometric equations governing the movement of
a family K = {K(t)}+c[o, 7 of compact subsets of RV :

VX,t:f(X7 tny,tan,bK)- (1)

@ V,is the normal velocity of a point x of OK(t).
@ vy is the unit exterior normal to K(t) at x € 0K (t).

@ At = —g—)”(l{(x, t)] is the curvature matrix of K(t) at x € OK(t).

@ K — f(x,t vxt, Dv,K) is a non-local dependence in the whole
front K (up to time t).
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Introduction
Level-set method

This method was developed by Sethian and Osher in 1988.

Assume that the front I'(t) = 9K(t) is smooth, and that there exists a
smooth u : RN x [0, T] — R such that

K(t) = {x e RN; u(x,t) > 0}, T(t)={x eRN; u(x,t) =0},

and Du(x, t) # 0 when x € I'(1).
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OUF IaW |S Vx7t - f(X, t, nyt,Axl, K)

But
ui(x, t) Du(x, t
Vx t

T Du(x, O YT T Du(x, )|

~—

ot Du(x, t)Du(x, )T
Aot = TButx. ) (’ T Du(x. D ) DEu(x, 1),

so that u satisfies the level-set equation associated to (1) :

Du 1 <_DuDuT

- - u, {u>
o) = (ot —po o (1 BE0e ) P fu> 0} ) 1Dut. 1)

= F(x,t, Du, D?u,1{y>0})| Du(x, 1).
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Introduction
Level-set method

To generalize the preceding evolution to non-smooth fronts, we realize
the following program :

@ Find up : RN — R such that
Ko = {uo >0}, To={up=0}.

@ Solve in the viscosity sense the problem

{ut(x, t) = F(x,t,Du, D?u,17,50y)|Du(x, t)] inRY x (0, T) )

u(0, x) = ug(x) inRN.
Q SetK(t) = {x e RN, u(x,t) >0}, T(t)={xecRN; u(x,t)=0}.
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Introduction
Examples of local laws

@ The eikonal equation Vi = c(x, t) of level-set equation

ur = c(x, t)|Dul.

@ The motion by mean curvature equation Vy ; = Hy ; = Tr(Ax,) of
level-set equation

Du (D?uDu, Du)
Dul = Ay — \27UPu By
o =i gy ) 1991 = Duf?
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Introduction
Main issue

Main problem : f is not necessarily monotone in K :
K c K’ does not imply
fix,t,v, A K) < f(x, t,v, A K).
= No inclusion principle :
Ko C Kj does not imply K(t) c K'(t) forall t > 0.

= The classical techniques for building a viscosity solution fail.
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Introduction

Example : dislocation dynamics

Recently, the dislocation dynamics model,
Vit = Co(-, 1) x 1k(n)(X) + c1(x, 1)
of associated level-set equation

ur(x, 1) = [o(-, ) * 1 n>0y(X) + € (x, )] [Du(x, 1),

has drawn a lot of attention.

® Co(", 1) x 1k (X) = [x(r) Co(x — y, 1) dy is a nonlocal driving
force.

@ ¢y is a prescribed driving force.
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Introduction

Dislocations
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Introduction

Movement of a dislocation
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Introduction
Known results

@ Alvarez, Hoch, Le Bouar, Monneau :

Short time existence and uniqueness of a viscosity solution, for
a smooth initial data.

@ Alvarez, Cardaliaguet, Monneau / Barles, Ley :

Long time existence and uniqueness of a viscosity solution, for
an initial shape Ky having the interior ball property, under the
condition that

ci(x,t) > |lco(- ll1 V(x,t) € RN x [0, +00).
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Introduction

Key point : Under the assumption that

ci(x, 1) > ool )1 V(x,1) € RV x [0, +00),
the motion, although non-local, is non-decreasing :
the velocity f of the front is non-negative, because

VK c RN, co(-, 1) x 1x(x) + c1(x, 1) > 0.
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Introduction

What remains of this if no assumption is made :

@ On the monotonicity of f,

@ On its sign?
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Weak solutions

Motivation of the definition of weak solutions

Let us investigate the stability of solutions : suppose that u. are
solutions to

(Ue)e(x, 1) = [Col-, 1) * V1w (=03 (X) + €1 (X, )] [ Duc(x, 1),
Ue(x,0) = uUp(x),

with ug — up uniformly.

Then standard estimates imply that u. — uin CO(RN x [0, T]),

and that 1,50, — x weakly-x in L (RN x [0, T], [0, 1]).

loc

From Barles’ stability result, we have in the L' viscosity sense :

ur(x, 1) = [Co(-, 1) * x (-, )(X) + ¢1(x, )] [Du(x, 1)},
{ u(x,0) = up(x),

and
1{u>0} <lim inf1{u620} <x< lim SUp1{u€20}§ 1{u20}
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Weak solutions

Definition of weak solutions

Let u: RN x [0, T] be a continuous function. We say that u is a weak
solution of (2) if there exists x € L(RN x [0, T], [0, 1]) such that :

@ uis the L' viscosity solution of

ur(x, t) = F(x,t, Du, D?u, x)|Du(x, t)| in RN x (0, T),
u(x,0) = ug(x) in RV,

@ Foralmostall t € [0, T],

1{U(',t)>0} < X('a t) < 1{u(~,t)20}-

Moreover, we say that v is a classical solution of (2) if in addition, for
almost all t € [0, T] and almost everywhere in RV,

{u(-, 1) > 0} = {u(-, 1) > 0}.
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Weak solutions
References

Similar definitions (with existence results) can be found in :

@ Giga, Goto, Ishii (SIAM J. Math. Anal., 1992)
@ Soravia, Souganidis (SIAM J. Math. Anal., 1996)

@ Hilhorst, Logak, Schatzle (Interfaces Free Bound., 2000) :
phase-field approach for the evolution law : Vi ; = Hy ; — VoI(K).
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Weak solutions

Existence theorem : assumptions on F

(H1) Forall x € L*(RN x [0, T], [0, 1]), the problem

u(x, t) = F(x,t, Du, D?u, x)|Du(x, )| in RN x (0, T),
u(x,0) = up(x) in RN

e has a continuous L' viscosity solution u with |u| < M.

o satisfies a comparison principle.

(H2) If xn — x weakly-x in L*(RN x [0, T], [0, 1]), then

t t
/ F(x,s,p,X,xn)ds — / F(x,s,p,X,x)ds
0 0
locally uniformly for t € [0, T] as n — +oc.

A. Monteillet (Univ. Brest) Propagations non-locales

20/59



Weak solutions
Existence theorem

Theorem (Barles, Cardaliaguet, Ley, M.)

Under assumptions (H1) and (H2), the problem

u(x, t) = F(x,t,Du, D?u, 1(,50y)|Du(x, t)| inRN x (0, T)
u(0, x) = ug(x) inRN.

has at least a weak solution.
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Weak solutions
Idea of proof

Let us consider the set-valued mapping

¢ x € L*®RY % [0,T],[0,1])
t) = F(x,t, Du, D D
— U viscosity solution of U, 1) (x. £, Du, D*u, ) Du(x. 1)
u(0, x) = uo(x)

= X Tun>0p < X'( 1) < V(. n0y for aimostall < [0, T]}.

Clearly, there exists a weak solution to (2) if and only if there exists a
fixed point of x of £ in the sense that x € £(x).

In this case the corresponding u is a weak solution to (2).
We prove existence of a fixed point of £ by Kakutani’s fixed point
theorem.
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Weak solutions

Verification of the assumptions

@ The map ¢ is well defined thanks to (H1).

@ Forany x € L~(RN x [0, T], [0, 1]), £(x) is convex and compact for
the L*°-weak-x topology (closed and bounded).

@ The map ¢ is upper semicontinuous for this topology, in the sense
that if

xn — x and xheé&lxn) -

Lo° —weak —x* Lo° —weak—x

then
X' € &(x)-
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Weak solutions

Discussion of the definition of weak solutions

Main advantages of the definition :

@ Existence result under mild conditions on the dynamics.
@ Stability results.
Main drawback :
The fattening phenomenon plays a central role :
@ We can not identify x on the set {u = 0}.
@ Strange behavior of t — x(-, t).
Main remaining difficulty :

@ Uniqueness is almost completely open.
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Outline

© Dislocation dynamics with a mean curvature term

A. Monteillet (Univ. Brest) Propagations non-locales 25/59



Dislocation dynamics with a mean curvature term
The equation

This is a joint work with N. Forcadel.

We consider the example of dislocation dynamics with a mean
curvature term :

V.t = Hx,t + Co(-, ) x 1y (X) + c1 (X, ). 3)

where Hy : = Tr(Ax,t) is the mean curvature of 0K (t) at a point x.
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Dislocation dynamics with a mean curvature term
Level-set equation

The level-set equation corresponding to (3) is

D
e, ) = [aiv (1) 06)+ 0o, # a0 (0 + (5,1 \Du(x(;;)\.

Abscence of sign of ¢y or comparison between ¢y, ¢4

= Non-monotone problem.
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Dislocation dynamics with a mean curvature term

Known results

Forcadel :

Short time existence and uniqueness of a viscosity solution,
provided the initial shape is a graph or a Lipschitz curve.
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Dislocation dynamics with a mean curvature term

Main issues

@ Can we provide weak solutions to (4) ?

@ Does the mean curvature term have a regularizing effect ?

© I[f the initial shape is smooth enough, is there a unique smooth
evolution for small times ?
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Dislocation dynamics with a mean curvature term

Main issues

@ Can we provide weak solutions to (4) ?

Yes, thanks to our existence theorem.

@ Does the mean curvature term have a regularizing effect ?

© If the initial shape is smooth enough, is there a unique smooth
evolution for small times ?
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Dislocation dynamics with a mean curvature term
Main issues

@ Can we provide weak solutions to (4) ?

Yes, thanks to our existence theorem.
@ Does the mean curvature term have a regularizing effect ?
We search for x(, t) in the particular form 1g(;) with some

regularity in time.

© If the initial shape is smooth enough, is there a unique smooth
evolution for small times ?
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Dislocation dynamics with a mean curvature term

Minimizing movements

We build E as a minimizing movement for our evolution law : following
Almgren, Taylor and Wang (1993), we discretize the equation

Vit = Hxt + Co(-5 t) x Tk (X) + c1(x, 1)

in time. Let h be a time step.

We are going to construct a sequence of sets Ep(k), for k € N such
that kh < T, whose evolution with k is a discretization of (3).

A. Monteillet (Univ. Brest) Propagations non-locales 30/59



Dislocation dynamics with a mean curvature term

Approximation of the velocity

Assume that this sequence is built.

Then, for x € OEx(k + 1) with x ¢ Ep(k),

de, (k) (X)

h

is an approximation of the velocity of x at time t = (k + 1)h.

Likewise, if x € Ex(k),
g, 0(%)
h

is an approximation of the velocity of x at time t = (k + 1)h.
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Dislocation dynamics with a mean curvature term
Discretization

We therefore wish to construct a sequence of sets Ej(k) such that for
all x € OEp(k + 1),

d X
LI G (K 1R * T (X) + Gy (K4 1))
h

()

where we take the + sign if x ¢ Ej(k), the — sign otherwise.

This corresponds to an implicit time discretization of (3).
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Dislocation dynamics with a mean curvature term

Corresponding gradient flow

We construct En(k + 1) by seeing the equation

e, ()(X)
+——"" = x,(k+1)h + Co(~, (k + 1)/7) * 1Eh(k+1)(X) + C1(X, (k + 1)h)
h

as the Euler equation corresponding to the minimization of the
functionnal

E — F(h,k+1,E, En(k))

]
= P(E)+ — d X) dx
(E) h Jen 9En (k) (X)

—/E(;Co(-,(k—i-1)h)*1E(X)+C1(X7 (k+1)h)> dx.
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Dislocation dynamics with a mean curvature term

Definition (Minimizing movement)

Let Eyg € P. We say that E : [0, T] — P is a minimizing movement
associated to F with initial condition Ej if there exist h, — 0T and sets
Ep,(k) € P for all k € N verifying kh, < T, such that :

Q E,,(0) = Eo.

@ Forany n,k e Nwith (k +1)h, < T,
Ep,(k + 1) minimizes the functional E — F(hny, k + 1, E, Ep,(K)).

© Forany t € [0, T], E, ([t/hn]) — E(t) in L'(RN) as n — +oo. )

A. Monteillet (Univ. Brest) Propagations non-locales 34 /59



Dislocation dynamics with a mean curvature term
Results

Under adapted regularity assumptions on ¢y and ¢y, we obtained :

Theorem (Forcadel, M.)

Let By € P with LN(9E,) = 0. Then :

@ There exist Holder continuous minimizing movements
associated to F with initial condition Ey.

@ The corresponding u is a weak solution of (4).

Q If Ey is a compact domain with uniformly C3+ boundary, there
exists a small time ty > 0 and a smooth evolution { E/(t)}o<<t,
with C3+® boundary, starting from E,, with velocity given by (3).

Moreover, any minimizing movement E associated to F with initial
condition Ey verifies E(t) = E.(t) for all t € [0, ] and almost
everywhere in RV,
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Dislocation dynamics with a mean curvature term

The main ingredients of proof are :

@ A lower density bound for F-minimizers : P(E, B,(x)) > BpN=1.
@ A Distance-Volume comparison to estimate |En(k + 1)AEx(K).

@ A regularity result for 7-minimizers, so that the Euler-Lagrange
equation corresponding to our minimizing procedure is the
discretized equation.

@ Sub/super pairs of solutions of Cardaliaguet and Pasquignon.
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A Fitzhugh-Nagumo type system
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A Fitzhugh-Nagumo type system
The system

This is a joint work with G. Barles, O. Ley and P. Cardaliaguet.

We are now interested in the asymptotic behavior as ¢ — 0 of the
following system,

U~ AU = L, ),
Vf —AvE = g(uaa VE)?
in RN x (0, T) (N > 3), where

fluyv)=u(1—-u)(u—a —-v (0<a<l),
g(u,v)=u—~v (v > 0).

The initial conditions are v(-,0) = 0 and u(-,0) = wp.
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A Fitzhugh-Nagumo type system
The asymptotic system

We expect a limit system of model case

ui(x,t) = c(v(x,t))|Du(x,t)|,
vi(x, t) — Av(x, t) = 1400501 (X),

for (x,t) € RN x (0, T).

The function c is Lipschitz continuous on R.
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A Fitzhugh-Nagumo type system
The Heat equation part

For x € L°(RN x (0, T)), the solution of

vi(x,t) — Av(x,t) = x(x, 1)
v(x,0)=0

is explicitly given by the formula

t
vty = [ [ ax—y.t- sy.s)dyas,

where G is the Green function defined by

2

G(y,s) = We
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A Fitzhugh-Nagumo type system
The Heat equation part

Hence problem (7) reduces to the equation

t
ui(x,t)y=c (/ G(x =y, t = s)1gy.5)>01 (¥ )dyds) |Du(x, t)]
0 JRN ()
= F(x,t,174>0y)|Du(x, t)].

with

F(x,t,x) = c(/ot/RN G(x—y,t—s)x(y,s)dyds> .

Abscence of sign or monotonicity of ¢ = Non-monotone problem.
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A Fitzhugh-Nagumo type system

Main issues

@ Can we provide weak solutions to (8) ?

Q@ If ¢ > 0, is this solution unique ?
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A Fitzhugh-Nagumo type system
Main issues

@ Can we provide weak solutions to (8) ?

Theorem (Giga, Goto, Ishii '92 / Soravia, Souganidis '96)
There exist weak solutions to (8).

If ¢ > 0, these solutions are classical.

@ If ¢ > 0, is this solution unique ?
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A Fitzhugh-Nagumo type system

Additionnal assumptions :

@ The initial set Ky C B(0, R) is the closure of a bounded open
subset of RN with C? boundary. (Technical assumption to be
relaxed)

@ Thereexist 6 > 0and L > 0 suchthatd < c¢(x) < LinR.
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A Fitzhugh-Nagumo type system

Let uy and u, be two classical solutions of

ui(x,t) = c(v(x,t))|Du(x,t)],
vi(x, t) — Av(x, t) = 11y n>03 (X)-

with initial conditions v(-,0) = 0 and u(-,0) = up.
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A Fitzhugh-Nagumo type system

Letus set, fori=1,2and t € [0, T],
Ki(t) = {u (-, t) > 0}, Ko(t) = {uz(-, t) > O},
and
t
Vi (%, 1) / G(x — y.t - S)lx(s)(y) dyds
0 JRN
the solution of

(Vi)l‘ _ Avi = 1Kl in RN X (O) T))
vi(-,0) =0 in R,

It suffices to prove that K; = Ko, since this implies that vi = v, and
finally uy = uo.
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A Fitzhugh-Nagumo type system

We estimate for any t € [0, T],

dn({ur (- t) = 0}, {ua(-, 1) > 0})
< Tk(N, T)[le(vi) — c(v2)ll o mnx(o, 1)

< TK(N, T) 1€ lloollvs — V| oo @N o, 1)
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A Fitzhugh-Nagumo type system

Forany x e RV and t € [0, T],

’V1(X7 t) - V2(X7 t)|

t
= /0 RN G(x =y, t = 8)(1k,(s)(¥) = 1k(5)(¥)) dyds

t
= /o RN G(x =y, t = 8)(Vky(s)\Ka(s) (V) + Tk (s)\Ki () (V) DS,
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A Fitzhugh-Nagumo type system

Set r= sup dx(Ki(t), Ka(t)) < LT.
te[0,T]

Then if B = B(0,1), we have

|V1(X7 t) - VZ(Xv t)|

t
< /o - Gx =y, t=8)Vk(s) Nko(s)(Y) T 1ia(s)  N\Ki(s)(¥)) dyds.

A. Monteillet (Univ. Brest) Propagations non-locales 48 /59



A Fitzhugh-Nagumo type system

Set r= sup dx(Ki(t), Ka(t)) < LT.
te[0,T]

Then if B = B(0,1), we have

|V1(X7 t) - VZ(Xv t)|

t
< /o - G(x — ¥y, t = S)(V(ky(5)+rB)\ Ka(s) (V) T 1K (s)+rB)\ ki () (V) dyds.
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A Fitzhugh-Nagumo type system

The key is to provide the estimate

t
| [, 6=yt = ) 1cio o (y) dyets < O

so that for any t € [0, T],

h({ur(-, 1) 2 0}, {uz(-, 1) 2 0}) < TK(N, T) ||| 2Cr,

and we would obtain that u; = u, on RN x [0, T] for T small enough.

A. Monteillet (Univ. Brest) Propagations non-locales 49 /59



A Fitzhugh-Nagumo type system
Interior cone property

However, the estimation

/Ot - G(x =y, t = S)1(k(s)+m)\k(s)(¥) dyds < Cr,
does not hold for any K :
@ it requires at least that (K(s) + rB) \ K(s) be small in L'(RM)...
@ ... which is not automatic since
Vol((K(s) + rB) \ K(8)) ~ Per(K(s)) r ...

© ... and would not be enough since x — v solution of v; — Av = ¢
is not continuous from L' to L*°.

— We need certain regularity for the sets K; = {u; > 0}.
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A Fitzhugh-Nagumo type system

This regularity is the interior cone property :
Definition

Let K be a compact subset of RN. We say that K has the interior cone
property of parameters p and 6 if 0 < p < 6 and

Vx € 9K, 3v e SN such that C% = x + [0, 6]Bn(v, p/0) C K,

where Bj(x, r) is the closed ball of R/ of radius r centered at x.
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A Fitzhugh-Nagumo type system

To prove our uniqueness result, we therefore need three ingredients :

@ The propagation of the interior cone property for solutions of the
eikonal equation :

Ki(t) = {u1(-, 1) > 0} and Kx(t) = {ux(+, t) > 0} have the interior
cone property for all t € [0, T], for some parameters p and 6
independent of t.

© A perimeter estimate for sets having the interior cone property.

© An estimate on the L> norm of the solutions of the r-perturbed
equation
Vt(X, t) — AV(X, t) = 1(K(t)+rB)\K(t)(X)
v(-,0) =0.

in function of r for such a K.
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A Fitzhugh-Nagumo type system

Propagation of the interior cone property

Theorem

Let Ky be the closure of a bounded open subset of RN with C?
boundary, and let ¢ : RN x [0, T] — RN satisfy the following
assumptions : there exist 5, L, M > 0 such that :

0<c<lL,
c is continuous on RN x [0, T],

Vte[0,T], c(-,t) is differentiable in RN with ||Dc||s < M.
Let u be the unique uniformly continuous viscosity solution of

ur(x, t) = c(x, )| Du(x, t)]  inRN x (0, T),
u(-,0) = up in RN,
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A Fitzhugh-Nagumo type system

Then there exist p > 0 and # > 0 depending only on ¢ and Ky such that
K(t) = {x e RN; u(x,t) >0}

has the interior cone property of parameters p and 6 for all t € [0, T].
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A Fitzhugh-Nagumo type system

Sets with the interior cone property

Let K be a compact subset of RN having the cone property of
parameters p and 6.

Then there exists a positive constant Cy = Cy(N, p,0/p) such that for
allR > 0,

HN=1(6K N B(0, R)) < Co LN(K N B(0, R + p/4)).
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A Fitzhugh-Nagumo type system

The r-perturbed equation

Let {K(t)}tepo,m C Bn(0, D) x [0, T] be a bounded family of compact
subsets of RN having the interior cone property of parameters p and 6
with0 < p < 6 < 1, and let us set, forany x ¢ RN, t € [0, T] and r > 0,

t
ot:r) = [ [ GO, =) it (v) oot

Then for any ry > 0, there exists a constant C; = C{(T, N, D, ry, p,0/p)
such that forany x ¢ RN, t € [0, T] and r € [0, ry],

|¢(Xa tvr)| < C1 r.
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