Multivariate subdivision and a simple formula

Tomas Sauer
Lehrstuhl für Numerische Mathematik
Justus–Liebig–Universität Gießen
Tomas.Sauer@math.uni-giessen.de

20.3.2008
Multivariate subdivision and a simple formula

The curse of dimension

Tomas Sauer
Lehrstuhl für Numerische Mathematik
Justus–Liebig–Universität Gießen
Tomas.Sauer@math.uni-giessen.de

20.3.2008
Multivariate subdivision and a simple formula

The curse of dimension and the cursed dimension

Tomas Sauer
Lehrstuhl für Numerische Mathematik
Justus–Liebig–Universität Gießen
Tomas.Sauer@math.uni-giessen.de

20.3.2008
Dimensions and Curses

- “Curse of dimension”:

 What is so bad?
Dimensions and Curses

“Curse of dimension”: Computational complexity increases exponentially with the number of variables.
Dimensions and Curses

- “Curse of dimension”: Computational complexity increases exponentially with the number of variables.

- Example: Grid with stepwidth h in $[0, 1]^S$
Dimensions and Curses

- “Curse of dimension”: Computational complexity increases \textit{exponentially} with the number of variables.

- \textbf{Example}: Grid with stepwidth h in $[0, 1]^s$ has h^{-s} grid points.
Dimensions and Curses

- “Curse of dimension”: Computational complexity increases exponentially with the number of variables.

- Example: Grid with stepwidth h in $[0, 1]^s$ has h^{-s} grid points.

- But: there are conceptional difficulties:
Dimensions and Curses

- “Curse of dimension”: Computational complexity increases exponentially with the number of variables.

- Example: Grid with stepwidth h in $[0,1]^s$ has h^{-s} grid points.

- But: there are conceptional difficulties:
 - Polynomials usually cannot be factorized.
Dimensions and Curses

-
 - "Curse of dimension": Computational complexity increases \textit{exponentially} with the number of variables.

- \textbf{Example}: Grid with stepwidth h in $[0,1]^s$ has h^{-s} grid points.

- \textbf{But}: there are \textit{conceptional} difficulties:
 - Polynomials usually cannot be factorized.
 - Polynomials form no principal ideal ring.
“Curse of dimension”: Computational complexity increases exponentially with the number of variables.

Example: Grid with stepwidth h in $[0,1]^s$ has h^{-s} grid points.

But: there are conceptional difficulties:

- Polynomials usually cannot be factorized.
- Polynomials form no principal ideal ring.
- Relevance of geometry.

What is so bad?
Dimensions and Curses

“Curse of dimension”: Computational complexity increases exponentially with the number of variables.

Example: Grid with stepwidth h in $[0, 1]^s$ has h^{-s} grid points.

But: there are conceptional difficulties:

- Polynomials usually cannot be factorized.
- Polynomials form no principal ideal ring.
- Relevance of geometry.

Problems:
Dimensions and Curses

- "Curse of dimension": Computational complexity increases exponentially with the number of variables.

- Example: Grid with stepwidth h in $[0, 1]^s$ has h^{-s} grid points.

- But: there are conceptional difficulties:
 - Polynomials usually cannot be factorized.
 - Polynomials form no principal ideal ring.
 - Relevance of geometry.

Problems: approximation order, rate of convergence, smoothness etc.
Dimensions and Curses

- "Curse of dimension": Computational complexity increases exponentially with the number of variables.

- Example: Grid with stepwidth h in $[0, 1]^s$ has h^{-s} grid points.

- But: there are conceptional difficulties:
 - Polynomials usually cannot be factorized.
 - Polynomials form no principal ideal ring.
 - Relevance of geometry.

Problems: approximation order, rate of convergence, smoothness etc. are related to polynomials!
Dimensions and Curses

- “Curse of dimension”: Computational complexity increases exponentially with the number of variables.

- **Example:** Grid with stepwidth h in $[0,1]^s$ has h^{-s} grid points.

- **But:** there are conceptional difficulties:
 - Polynomials usually cannot be factorized.
 - Polynomials form no principal ideal ring.
 - Relevance of geometry.

Problems: approximation order, rate of convergence, smoothness etc. are related to polynomials!

“Locally, polynomials are kings” (C. de Boor)
Dimensions and Curses

- “Curse of dimension”: Computational complexity increases exponentially with the number of variables.

- **Example**: Grid with stepwidth h in $[0,1]^s$ has h^{-s} grid points.

- **But**: there are conceptional difficulties:
 - Polynomials usually cannot be factorized.
 - Polynomials form no principal ideal ring.
 - Relevance of geometry.

Problems: approximation order, rate of convergence, smoothness etc. are related to polynomials!

“Locally, polynomials are kings” (C. de Boor)

- Real curse of dimension
Dimensions and Curses

- "Curse of dimension": Computational complexity increases *exponentially* with the number of variables.

- **Example**: Grid with stepwidth h in $[0, 1]^s$ has h^{-s} grid points.

- **But**: there are *conceptional* difficulties:
 - Polynomials usually cannot be factorized.
 - Polynomials form no principal ideal ring.
 - Relevance of geometry.

Problems: approximation order, rate of convergence, smoothness etc. are related to polynomials!

 “Locally, polynomials are kings” (C. de Boor)

- Real curse of dimension – cursed dimension!
Refinable functions

Definition. \(\varphi : \mathbb{R} \to \mathbb{R} \) is called refinable with respect to \(\alpha : \mathbb{Z} \to \mathbb{R} \).
Refinable functions

Definition. \(\varphi : \mathbb{R} \to \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \to \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi(2 \cdot -k). \tag{\star}
\]
Refinable functions

Definition. \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \rightarrow \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi (2 \cdot -k).
\]

(\text{\textquoteleft\textquoteleft }Refinement \text{\textquoteright\textquoteright\ equation\textquoteright\textquoteright\textquoteright},)
Refinable functions

Definition. \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \rightarrow \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi (2 \cdot -k) .
\]

\((*) \)

"Refinement equation", classical . . .
Refinable functions

Definition. \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \rightarrow \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi (2 \cdot -k) .
\]

\(\star \)

"Refinement equation", classical . . .

\(\square \) Relevance: Multiresolution Analysis\(^\text{TM} \), wavelets.
Refinable functions

Definition. \(\varphi : \mathbb{R} \to \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \to \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi (2 \cdot -k) .
\]

\((*) \)

“Refinement equation”, classical . . .

□ Relevance: Multiresolution Analysis\(^\text{TM}\), wavelets.

□ “Normally”:
Refinable functions

Definition. \(\varphi : \mathbb{R} \to \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \to \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi (2 \cdot -k). \quad \text{(*)}
\]

"Refinement equation", classical . . .

\[\square\text{ Relevance: Multiresolution Analysis}^\text{TM}, \text{ wavelets.}\]

\[\square\text{ “Normally”: Only the coefficient vector } a \text{ is given explicitly.}\]
Refinable functions

Definition. \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \rightarrow \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi(2 \cdot -k) .
\]

(*)

"Refinement equation", classical . . .

\square **Relevance:** Multiresolution AnalysisTM, wavelets.

\square “Normally”: Only the coefficient vector \(a \) is given explicitly.

\(\triangleright \) \(a \) corresponds to LTI filter (bank)
Refinable functions

Definition. \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \rightarrow \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi(2 \cdot -k). \tag{*}
\]

"Refinement equation", classical . . .

□ Relevance: Multiresolution AnalysisTM, wavelets.

□ "Normally": Only the coefficient vector \(a \) is given explicitly.

▷ \(a \) corresponds to LTI filter (bank) (Linear Time Invariant).
Refinable functions

Definition. \(\varphi : \mathbb{R} \to \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \to \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi (2 \cdot -k).
\]

\(\ast \)

“Refinement equation”, classical . . .

\(\square \) Relevance: Multiresolution Analysis\(^\text{TM} \), wavelets.

\(\square \) “Normally”: Only the coefficient vector \(a \) is given explicitly.

\(\triangleright \) \(a \) corresponds to LTI filter (bank) (Linear Time Invariant).

\(\triangleright \) \(a \) has to be constructed appropriately
Refinable functions

Definition. \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \rightarrow \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi(2 \cdot -k) .
\]

("Refinement equation", classical . . .)

- **Relevance:** Multiresolution Analysis™, wavelets.
- "Normally": Only the coefficient vector \(a \) is given explicitly.
 - \(a \) corresponds to LTI filter (bank) (Linear Time Invariant).
 - \(a \) has to be constructed appropriately – finite support!
Refinable functions

Definition. \(\varphi : \mathbb{R} \to \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \to \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi (2 \cdot -k). \tag{*}
\]

“Refinement equation”, classical . . .

□ Relevance: Multiresolution Analysis\(^{\text{TM}}\), wavelets.

□ “Normally”: Only the coefficient vector \(a \) is given explicitly.

▶ \(a \) corresponds to LTI filter (bank) (Linear Time Invariant).
▶ \(a \) has to be constructed appropriately – finite support!
▶ \(\varphi \) only known implicitly as solution of functional equation (*)

The simple case
Refinable functions

Definition. \(\varphi : \mathbb{R} \to \mathbb{R} \) is called refinable with respect to \(a : \mathbb{Z} \to \mathbb{R} \) if

\[
\varphi = \sum_{j \in \mathbb{Z}} a(k) \varphi (2 \cdot -k) .
\]

("Refinement equation", classical . . .

- **Relevance**: Multiresolution Analysis\(^\text{TM}\), wavelets.

- "Normally": Only the coefficient vector \(a \) is given explicitly.
 - \(a \) corresponds to LTI filter (bank) (Linear Time Invariant).
 - \(a \) has to be constructed appropriately – finite support!
 - \(\varphi \) only known implicitly as solution of functional equation (*)
 - **Task**: Determine properties of \(\varphi \) from \(a \).
Geometry of refinable functions

Building blocks of refinement equation:
Geometry of refinable functions

Building blocks of refinement equation:

- dilated functions: $\varphi(2\cdot)$.
Geometry of refinable functions

Building blocks of refinement equation:

- dilated functions: $\varphi(2 \cdot)$.

- translates by $k/2$: $\varphi(2 \cdot -k)$.
Geometry of refinable functions

Building blocks of refinement equation:

- dilated functions: $\varphi(2 \cdot)$.

- translates by $k/2$: $\varphi(2 \cdot -k)$.

- weigthed combination:
Geometry of refinable functions

Building blocks of refinement equation:

- dilated functions: \(\varphi(2\cdot) \).
- translates by \(k/2 \): \(\varphi(2 \cdot -k) \).
- weighted combination:

\[
\sum_{k \in \mathbb{Z}} \varphi(2 \cdot -k) a(k)
\]
Geometry of refinable functions

Building blocks of refinement equation:

- dilated functions: \(\varphi(2 \cdot \cdot) \).
- translates by \(k/2 \): \(\varphi(2 \cdot -k) \).
- weighed combination:

\[
\sum_{k \in \mathbb{Z}} \varphi(2 \cdot -k) a(k)
\]
Geometry of refinable functions

Building blocks of refinement equation:

- dilated functions: \(\varphi(2 \cdot \cdot) \).
- translates by \(k/2 \): \(\varphi(2 \cdot -k) \).
- weighted combination:

\[
\sum_{k \in \mathbb{Z}} \varphi(2 \cdot -k) a(k) =: (\varphi \ast a)(2 \cdot)
\]

“semi–discrete” convolution, order will become important!
Geometry of refinable functions

Building blocks of refinement equation:

- dilated functions: \(\phi(2 \cdot \cdot) \).
- translates by \(k/2 \): \(\phi(2 \cdot -k) \).
- weighed combination:

\[
\sum_{k \in \mathbb{Z}} \phi(2 \cdot -k) a(k) =: (\phi \ast a)(2 \cdot)
\]

“semi–discrete” convolution, order will become important!

- In the example: \(a = (\ldots, 0, \frac{1}{2}, 1, \frac{1}{2}, 0, \ldots) \).
The subdivision operator

☐ Simple computation:
The subdivision operator

- Simple computation:

\[\varphi \ast c \]
The subdivision operator

Simple computation:

\[\varphi \ast c = (\varphi \ast a) (2 \cdot) \ast c \]
The subdivision operator

Simple computation:

\[\varphi * c = (\varphi * a)(2\cdot) * c = \sum_{j \in \mathbb{Z}} \varphi(2 \cdot -j) \sum_{k \in \mathbb{Z}} a(j - 2k) c(k) \]
The subdivision operator

Simple computation:

\[\varphi \ast c = (\varphi \ast a)(2 \cdot) \ast c = \sum_{j \in \mathbb{Z}} \varphi (2 \cdot - j) \sum_{k \in \mathbb{Z}} a (j - 2k) c(k) \]

\[=: \varphi \ast S_a c (2 \cdot). \]
The subdivision operator

□ Simple computation:

\[
\phi \ast c = (\phi \ast a) (2 \cdot) \ast c = \sum_{j \in \mathbb{Z}} \phi (2 \cdot -j) \sum_{k \in \mathbb{Z}} a (j - 2k) c (k)
\]

\[=:\quad \phi \ast S_\alpha c (2 \cdot).\]

□ The operator

\[
S_\alpha : c \mapsto \sum_{k \in \mathbb{Z}} a (\cdot - 2k) c(k)
\]

is called subdivision operator.
The subdivision operator

Simple computation:

\[\varphi \ast c = (\varphi \ast a)(2 \cdot) \ast c = \sum_{j \in \mathbb{Z}} \varphi(2 \cdot - j) \sum_{k \in \mathbb{Z}} a(j - 2k) c(k) \]

\[=: \varphi \ast S_\alpha c(2 \cdot). \]

The operator

\[S_\alpha : c \mapsto \sum_{k \in \mathbb{Z}} \alpha(\cdot - 2k) c(k) \]

is called subdivision operator.

Alternatively:
The subdivision operator

Simple computation:

\[
\varphi \ast c = (\varphi \ast a)(2 \cdot) \ast c = \sum_{j \in \mathbb{Z}} \varphi(2 \cdot - j) \sum_{k \in \mathbb{Z}} a(j - 2k) c(k) =: \varphi \ast S_a c(2 \cdot).
\]

The operator

\[S_a : c \mapsto \sum_{k \in \mathbb{Z}} a(\cdot - 2k) c(k) \quad (\ldots, 0, c(-1), 0, c(0), 0, c(1), 0, \ldots)\]

is called subdivision operator.

Alternatively: upsampling

The simple case
The subdivision operator

□ Simple computation:

\[
\varphi * c = (\varphi * a)(2 \cdot) * c = \sum_{j \in \mathbb{Z}} \varphi(2 \cdot - j) \sum_{k \in \mathbb{Z}} a(j - 2k) \, c(k)
\]

\[=: \varphi * S_a c (2 \cdot).\]

□ The operator

\[S_a: c \mapsto \sum_{k \in \mathbb{Z}} a(\cdot - 2k) \, c(k) = a(\ldots, 0, c(-1), 0, c(0), 0, c(1), 0, \ldots)\]

is called subdivision operator.

□ Alternatively: upsampling and filtering.
Subdivision and convergence

Because of

\[\varphi \ast c = \varphi \ast S_\alpha c (2 \cdot) \]
Subdivision and convergence

Because of

\[\varphi \ast c = \varphi \ast S_a c (2^r) = \cdots = \varphi \ast S_a^r c (2^r) , \quad r \in \mathbb{N}, \]
Subdivision and convergence

Because of

$$\varphi \ast c = \varphi \ast S_a c (2^r \cdot) = \cdots = \varphi \ast S_a^r c (2^r \cdot), \quad r \in \mathbb{N},$$

we have

$$S_a^r c \sim f (2^{-r} \cdot).$$
Subdivision and convergence

Because of

$$\varphi \ast c = \varphi \ast S_a c (2^\cdot) = \cdots = \varphi \ast S_a^r c (2^r \cdot), \quad r \in \mathbb{N},$$

we have

$$S_a^r c \sim f (2^{-r} \cdot).$$

Definition. *Subdivision scheme* S_a *is called convergent,*
Subdivision and convergence

Because of

$$\varphi \ast c = \varphi \ast S_a c (2 \cdot) = \cdots = \varphi \ast S_a^r c (2^r \cdot), \quad r \in \mathbb{N},$$

we have

$$S_a^r c \sim f (2^{-r} \cdot).$$

Definition. Subdivision scheme S_a is called *convergent*, if for any c there exists a limit function f such that

$$\lim_{r \to \infty} \| S_a^r c - f_c \| = 0$$

and $f_c \neq 0$ for at least one c.

Subdivision and convergence

Because of

\[\varphi \ast c = \varphi \ast S_a c (2^r) = \cdots = \varphi \ast S_a^r c (2^r), \quad r \in \mathbb{N}, \]

we have

\[S_a^r c \sim f (2^{-r} \cdot). \]

Definition. *Subdivision scheme* S_a *is called convergent*, if for any c there exists a limit function f such that

\[\lim_{r \to \infty} \| S_a^r c - f_c \| = 0 \]

Compares apples and peas!

and $f_c \neq 0$ for at least one c.
Subdivision and convergence

Because of

\[\varphi \ast c = \varphi \ast S_a c (2^r \cdot) = \cdots = \varphi \ast S_a c (2^r \cdot), \quad r \in \mathbb{N}, \]

we have

\[S^r_a c \sim f (2^{-r} \cdot). \]

Definition. Subdivision scheme \(S_a \) is called convergent, if for any \(c \) there exists a limit function \(f \) such that

\[\lim_{r \to \infty} \| S^r_a c - f_c \| = 0 \]

Comparer apples and peas! Discrete and continuous funktion!

and \(f_c \neq 0 \) for at least one \(c \).
Subdivision and convergence

Because of

\[\varphi * c = \varphi * S_a c (2^r) = \cdots = \varphi * S_a c (2^r), \quad r \in \mathbb{N}, \]

we have

\[S^r_a c \sim f (2^{-r}). \]

Definition. Subdivision scheme \(S_a \) is called **convergent**, if for any \(c \) there exists a **limit function** \(f \) such that

\[\lim_{r \to \infty} \| S^r_a c - f_c \| = 0 \]

Compares apples and peas! Discrete and continuous funktion!

and \(f_c \neq 0 \) for at least one \(c \).

Remark. Norm \(\leftrightarrow \) spaces from which \(c \) and \(f_c \) are taken.
Spaces and symbols

- Sequence spaces $\ell_p(\mathbb{Z}) \subset \ell(\mathbb{Z})$, $1 \leq p \leq \infty$.
Spaces and symbols

- Sequence spaces $\ell_p(\mathbb{Z}) \subset \ell(\mathbb{Z})$, $1 \leq p \leq \infty$.

- Function spaces $H_p = L_p(\mathbb{R})$, $1 \leq p < \infty$, and $H_p = C_u(\mathbb{R})$, $p = \infty$.
Spaces and symbols

- Sequence spaces $\ell_p(\mathbb{Z}) \subset \ell(\mathbb{Z})$, $1 \leq p \leq \infty$.

- Function spaces $H_p = L_p(\mathbb{R})$, $1 \leq p < \infty$, and $H_p = C_u(\mathbb{R})$, $p = \infty$.

- Operating on discrete lattices $\Rightarrow L_\infty$ makes no sense.
Spaces and symbols

- Sequence spaces \(\ell_p(\mathbb{Z}) \subset \ell(\mathbb{Z}), \ 1 \leq p \leq \infty \).
- Function spaces \(H_p = L_p(\mathbb{R}), \ 1 \leq p < \infty \), and \(H_p = C_u(\mathbb{R}), \ p = \infty \).
- Operating on discrete lattices \(\Rightarrow L_\infty \) makes no sense.

Definition. For \(a \in \ell(\mathbb{Z}) \) the Symbol \(a^*(z) \) is the Laurent polynomial

\[
a^*(z) = \sum_{k \in \mathbb{Z}} a(k) z^k, \quad z \in \mathbb{C}_\times := \mathbb{C} \setminus \{0\}.
\]
Spaces and symbols

- Sequence spaces $\ell_p(\mathbb{Z}) \subset \ell(\mathbb{Z})$, $1 \leq p \leq \infty$.
- Function spaces $H_p = L_p(\mathbb{R})$, $1 \leq p < \infty$, and $H_p = C_\text{u}(\mathbb{R})$, $p = \infty$.
- Operating on discrete lattices \(\Rightarrow L_\infty\) makes no sense.

Definition. For $a \in \ell(\mathbb{Z})$ the Symbol $a^*(z)$ is the Laurent polynomial

$$a^*(z) = \sum_{k \in \mathbb{Z}} a(k) z^k, \quad z \in \mathbb{C}_x := \mathbb{C} \setminus \{0\}.$$

z^{-1} transformation!
Spaces and symbols

- Sequence spaces $\ell_p(\mathbb{Z}) \subset \ell(\mathbb{Z})$, $1 \leq p \leq \infty$.
- Function spaces $H_p = L_p(\mathbb{R})$, $1 \leq p < \infty$, and $H_p = C_u(\mathbb{R})$, $p = \infty$.
- Operating on discrete lattices $\Rightarrow L_\infty$ makes no sense.

Definition. For $a \in \ell(\mathbb{Z})$ the Symbol $a^*(z)$ is the Laurent polynomial

$$a^*(z) = \sum_{k \in \mathbb{Z}} a(k) z^k, \quad z \in \mathbb{C}_{\times} := \mathbb{C} \setminus \{0\}.$$

z^{-1} transformation!

Example. $(S_\alpha c)^* = a^*(z) c^*(z^2)$.

The Theorem

Goal:
The Theorem

Goal: Determine from mask α whether φ
The Theorem

Goal: Determine from mask α whether φ

- is differentiable.
The Theorem

Goal: Determine from mask α whether φ

- is differentiable.
- can (re)produce polynomials:
The Theorem

Goal: Determine from mask α whether φ

- is differentiable.

- can (re)produce polynomials: $\Pi_k \subset \varphi * \ell(\mathbb{Z})$.
The Theorem

Goal: Determine from mask α whether φ

- is differentiable.

- can (re)produce polynomials: $\Pi_k \subset \varphi \ast \ell(\mathbb{Z})$.

 “Approximation order”, vanishing moments of filters, compression rates, . . .
The Theorem

Goal: Determine from mask α whether φ

☐ is differentiable.

☐ can (re)produce polynomials: $\Pi_k \subset \varphi \ast \ell(\mathbb{Z})$.

“Approximation order”, vanishing moments of filters, compression rates, . . .

Theorem. [classical]
The Theorem

Goal: Determine from mask α whether φ

- is differentiable.
- can (re)produce polynomials: $\Pi_k \subset \varphi \ast \ell(\mathbb{Z})$.

“Approximation order”, vanishing moments of filters, compression rates, . . .

Theorem. [classical]

φ has a first derivative if and only if
The Theorem

Goal: Determine from mask α whether φ

- is differentiable.
- can (re)produce polynomials: $\Pi_k \subset \varphi \ast \ell(\mathbb{Z})$.

“Approximation order”, vanishing moments of filters, compression rates, ...

Theorem. [classical]
φ has a first derivative if and only if

1. $\alpha^*(z) = \frac{1}{2} (z + 1) b^*(z)$,
The Theorem

Goal: Determine from mask \(\alpha \) whether \(\varphi \)

\(\square \) is differentiable.

\(\square \) can (re)produce polynomials: \(\Pi_k \subset \varphi \ast \ell(\mathbb{Z}) \).

“Approximation order”, vanishing moments of filters, compression rates, \ldots

Theorem. [classical]

\(\varphi \) has a first derivative if and only if

1. \(\alpha^*(z) = \frac{1}{2} (z + 1) b^*(z) \),

2. the subdivision scheme \(S_b \) converges.
The Theorem

Goal: Determine from mask \(\alpha \) whether \(\varphi \)

\(\square \) is differentiable.

\(\square \) can (re)produce polynomials: \(\Pi_k \subset \varphi \ast \ell(\mathbb{Z}) \).

“Approximation order”, vanishing moments of filters, compression rates, ...

Theorem. [classical] \(\varphi \) stable. \(\varphi \) has a first derivative if and only if

1. \(\alpha^*(z) = \frac{1}{2} (z + 1) b^*(z) \),

2. the subdivision scheme \(S_b \) converges.
The Theorem

Goal: Determine from mask a whether φ

- is differentiable.
- can (re)produce polynomials: $\Pi_k \subset \varphi \ast \ell(\mathbb{Z})$.

“Approximation order”, vanishing moments of filters, compression rates, …

Theorem. [classical] φ stable.

φ has a first derivative if and only if

1. $a^*(z) = \frac{1}{2}(z + 1)b^*(z),$

2. the subdivision scheme S_b converges.

Stability: $\|\varphi \ast c\| \sim \|c\|$
The Theorem

Goal: Determine from mask α whether φ

\square is differentiable.

\square can (re)produce polynomials: $\Pi_k \subset \varphi \ast \ell(\mathbb{Z})$.

“Approximation order”, vanishing moments of filters, compression rates, . . .

Theorem. [classical] φ stable.

φ has a first derivative if and only if

1. $a^*(z) = \frac{1}{2} (z + 1) b^*(z)$,

2. the subdivision scheme S_b converges.

Stability: $\| \varphi \ast c \| \approx \| c \|$ – equivalence of norms.
Comments

☐ Higher order derivatives by iteration:
Comments

Higher order derivatives by iteration:

\[\varphi \in H_p^k \iff a^*(z) = \frac{(z + 1)^r}{2^r} b^*(z), \quad S_b, \quad H_p\text{-convergent.} \]
Comments

- Higher order derivatives by iteration:

\[\varphi \in H^k_p \iff a^*(z) = \frac{(z + 1)^r}{2^r} b^*(z), \quad S_b \quad H_p \text{–convergent.} \]

- Consequence: “smoothing” of known refinable functions.
Comments

Higher order derivatives by iteration:

\[\varphi \in H_p^k \iff a^*(z) = \frac{(z + 1)^r}{2^r} b^*(z), \quad S_b \quad H_p-\text{convergent}. \]

Consequence: “smoothing” of known refinable functions.
Corresponds to \(\varphi \mapsto \varphi \ast \chi_{[0,1]} \).
Comments

 Higher order derivatives by iteration:

\[\varphi \in H_p^k \iff a^*(z) = \frac{(z + 1)^r}{2^r} b^*(z), \quad S_b \quad H_p \text{–convergent.} \]

 Consequence: “smoothing” of known refinable functions.
 Corresponds to \(\varphi \mapsto \varphi \ast \chi_{[0,1]} \).

 “Minimal” functions: B–splines.
Comments

- Higher order derivatives by iteration:
 \[\varphi \in H_p^k \iff a^*(z) = \frac{(z+1)^r}{2^r} b^*(z), \quad S_b \quad H_p \text{-convergent}. \]

- Consequence: “smoothing” of known refinable functions. Corresponds to \(\varphi \mapsto \varphi \ast \chi_{[0,1]} \).

- “Minimal” functions: B–splines.

- Stability is (in general) necessary for characterization.
Comments

□ Higher order derivatives by iteration:

\[\varphi \in H_k^p \iff \alpha^*(z) = \frac{(z+1)^r}{2^r} b^*(z), \quad S_b \quad H_p – \text{convergent}. \]

□ Consequence: “smoothing” of known refinable functions.
Corresponds to \(\varphi \mapsto \varphi \ast \chi_{[0,1]} \).

□ “Minimal” functions: B–splines.

□ Stability is (in general) necessary for characterization.

□ Stability gives more:
Comments

- Higher order derivatives by iteration:
 \[\phi \in H_p^k \iff a^*(z) = \frac{(z + 1)^r}{2^r} b^*(z), \quad S_b \quad H_p-\text{convergent}. \]

- Consequence: “smoothing” of known refinable functions. Corresponds to \(\phi \mapsto \phi \ast \chi_{[0,1]} \).

- “Minimal” functions: B–splines.

- Stability is (in general) necessary for characterization.

- Stability gives more:
 \[\phi \text{ stable and } \alpha-\text{refinable} \Rightarrow S_{\alpha} \text{ converges}. \]
A different interpretation

- Backward difference \(\nabla c := c (\cdot - 1) - c. \)
A different interpretation

- Backward difference $\nabla c := c(z - 1) - c$.
- Satisfies $(\nabla c)^* = (z - 1)c(z)$.
A different interpretation

□ *Backward difference* $\nabla c := c \cdot (\cdot - 1) - c$.

□ Satisfies $(\nabla c)^* = (z - 1) c(z)$.

□ For $a^*(z) = (z + 1) b^*(z)$:
A different interpretation

- **Backward difference** $\nabla c := c (\cdot - 1) - c$.

- Satisfies $(\nabla c)^* = (z - 1) c(z)$.

- For $a^*(z) = (z + 1) b^*(z)$:
 \[S_a c = a^*(z) c^*(z^2) \]
A different interpretation

- **Backward difference** \(\nabla c := c(z - 1) - c. \)
- Satisfies \((\nabla c)^* = (z - 1)c(z).\)
- For \(a^*(z) = (z + 1)b^*(z):\)

\[
\nabla S_a c = (z - 1) a^*(z) c^* (z^2)
\]
A different interpretation

- **Backward difference** $\nabla c := c(z - 1) - c$.

- Satisfies $(\nabla c)^* = (z - 1) c(z)$.

- For $a^*(z) = (z + 1) b^*(z)$:

 $$\nabla S_a c = (z - 1) a^*(z) c^*(z^2) = b^*(z) (z^2 - 1) c^*(z^2)$$
A different interpretation

- **Backward difference** \(\nabla c := c \cdot -1 - c \).

- Satisfies \((\nabla c)^* = (z - 1) c(z)\).

- For \(a^*(z) = (z + 1) b^*(z)\):

\[
\nabla S_a c = (z - 1) a^*(z) c^*(z^2) = b^*(z) (z^2 - 1) c^*(z^2) = S_b \nabla c
\]
A different interpretation

- Backward difference \(\nabla c := c(\cdot - 1) - c \).

- Satisfies \((\nabla c)^* = (z - 1) c(z)\).

- For \(a^*(z) = (z + 1) b^*(z)\):

\[
\nabla S_a c = (z - 1) a^*(z) c^*(z^2) = b^*(z) (z^2 - 1) c^*(z^2) = S_b \nabla c
\]

Corollary. Stable \(\varphi \) is differentiable if and only if

\[
\nabla S_a = \frac{1}{2} S_b \nabla \quad \text{and} \quad S_b \text{ convergent.}
\]
A different interpretation

- **Backward difference** \(\nabla c := c(z - 1) - c \).

- Satisfies \((\nabla c)^* = (z - 1)c(z)\).

- For \(a^*(z) = (z + 1)b^*(z)\):

 \[
 \nabla S_a c = (z - 1) a^*(z) c^* (z^2) = b^*(z) (z^2 - 1) c^* (z^2) = S_b \nabla c
 \]

Corollary. Stable \(\varphi\) is differentiable if and only if

\[
\nabla S_a = \frac{1}{2} S_b \nabla \quad \text{and} \quad S_b \text{ convergent.}
\]

"Factorization" by means of difference operators.
And now to the real stuff

Ingredients in s variables:
And now to the real stuff

Ingredients in s variables:

- *Dilatation* matrix $\Xi \in \mathbb{Z}^{s \times s}$.
And now to the real stuff

Ingredients in s variables:

- *Dilatation* matrix $\Xi \in \mathbb{Z}^{s \times s}$.

 “Expanding”:
And now to the real stuff

Ingredients in s variables:

- **Dilatation** matrix $\Xi \in \mathbb{Z}^{s \times s}$.
 - “Expanding”: eigenvalues $| \cdot | > 1$ or $\|\Xi^{-k}\| \rightarrow 0$
And now to the real stuff

Ingredients in s variables:

- **Dilatation matrix** $\Xi \in \mathbb{Z}^{s \times s}$.

 - "Expanding": eigenvalues $|\cdot| > 1$ or $\|\Xi^{-k}\| \to 0 \implies \Xi^{-k}\mathbb{Z}^s$ dense.
And now to the real stuff

Ingredients in s variables:

- **Dilatation** matrix $\Xi \in \mathbb{Z}^{s \times s}$.
 - “Expanding”: eigenvalues $|\cdot| > 1$ or $\|\Xi^{-k}\| \to 0 \Rightarrow \Xi^{-k}\mathbb{Z}^s$ dense.
 - “Isotropic:” alle eigenvalues have the same modulus.
And now to the real stuff

Ingredients in s variables:

- **Dilatation** matrix $\Xi \in \mathbb{Z}^{s \times s}$.
 - "Expanding": eigenvalues $|\cdot| > 1$ or $\|\Xi^{-k}\| \to 0 \Rightarrow \Xi^{-k}\mathbb{Z}^s$ dense.
 - "Isotropic:” alle eigenvalues have the same modulus. $\Rightarrow \kappa(\Xi^k) < C$.
And now to the real stuff

Ingredients in s variables:

- **Dilatation matrix** $\Xi \in \mathbb{Z}^{s \times s}$.
 - "Expanding": eigenvalues $|\cdot| > 1$ or $\|\Xi^{-k}\| \to 0 \Rightarrow \Xi^{-k}\mathbb{Z}^s$ dense.
 - "Isotropic:" alle eigenvalues have the same modulus. $\Rightarrow \kappa(\Xi^k) < C$.

- Refinable function Φ is $\mathbb{N} \times \mathbb{N}$--matrix valued
And now to the real stuff

Ingredients in s variables:

- **Dilatation matrix** $\Xi \in \mathbb{Z}^{s \times s}$.
 - **“Expanding”**: eigenvalues $| \cdot | > 1$ or $\| \Xi^{-k} \| \to 0 \Rightarrow \Xi^{-k} \mathbb{Z}^s$ dense.
 - **“Isotropic:”** alle eigenvalues have the same modulus. $\Rightarrow \kappa (\Xi^k) < C$.

- Refinable function Φ is $\mathbb{N} \times \mathbb{N}$–matrix valued

\[\Phi = \Phi \ast A (\Xi \cdot) \]
And now to the real stuff

Ingredients in s variables:

- **Dilatation** matrix $\Xi \in \mathbb{Z}^{s \times s}$.
 - “Expanding”: eigenvalues $|\cdot| > 1$ or $\|\Xi^{-k}\| \to 0 \Rightarrow \Xi^{-k}\mathbb{Z}^s$ dense.
 - “Isotropic:” alle eigenvalues have the same modulus. $\Rightarrow \kappa (\Xi^k) < C$.

- Refinable function Φ is $\mathbb{N} \times \mathbb{N}$–matrix valued (order!)

 $$\Phi = \Phi \ast A (\Xi)$$
And now to the real stuff

Ingredients in s variables:

- **Dilatation** matrix $\Xi \in \mathbb{Z}^{s \times s}$.
 - “Expanding”: eigenvalues $| \cdot | > 1$ or $\| \Xi^{-k} \| \to 0 \Rightarrow \Xi^{-k} \mathbb{Z}^s$ dense.
 - “Isotropic:” alle eigenvalues have the same modulus. $\Rightarrow \kappa (\Xi^k) < C$.

- Refinable function Φ is $\mathbb{N} \times \mathbb{N}$–matrix valued (order!)
 \[
 \Phi = \Phi \ast A (\Xi \cdot) = \sum_{\alpha \in \mathbb{Z}^s} \Phi (\Xi \cdot - \alpha) A(\alpha), \quad A \in \ell^{\mathbb{N} \times \mathbb{N}} (\mathbb{Z}^s).
 \]
And now to the real stuff

Ingredients in s variables:

- **Dilatation matrix** $\Xi \in \mathbb{Z}^{s \times s}$.
 - "Expanding": eigenvalues $| \cdot | > 1$ or $\| \Xi^{-k} \| \to 0 \implies \Xi^{-k} \mathbb{Z}^s$ dense.
 - "Isotropic:" alle eigenvalues have the same modulus. $\implies \kappa (\Xi^k) < C$.

- Refinable function Φ is $\mathbb{N} \times \mathbb{N}$–matrix valued (order!)

\[
\Phi = \Phi \star A (\Xi \cdot) = \sum_{\alpha \in \mathbb{Z}^s} \Phi (\Xi \cdot - \alpha) A(\alpha), \quad A \in \ell^{\mathbb{N} \times \mathbb{N}}(\mathbb{Z}^s).
\]

- Subdivision operator:
And now to the real stuff

Ingredients in s variables:

- **Dilatation** matrix $\Xi \in \mathbb{Z}^{s \times s}$.
 - “Expanding”: eigenvalues $|\cdot| > 1$ or $\|\Xi^{-k}\| \to 0 \implies \Xi^{-k}\mathbb{Z}^s$ dense.
 - “Isotropic:” alle eigenvalues have the same modulus. $\implies \kappa(\Xi^k) < C$.

- Refinable function Φ is $\mathbb{N} \times \mathbb{N}$–matrix valued (order!)

 \[
 \Phi = \Phi \ast A(\cdot) = \sum_{\alpha \in \mathbb{Z}^s} \Phi(\Xi \cdot - \alpha) A(\alpha), \quad A \in \ell^{\mathbb{N} \times \mathbb{N}}(\mathbb{Z}^s).
 \]

- Subdivision operator:

 \[
 S_A c = \sum_{\alpha \in \mathbb{Z}^s} A(\cdot - \Xi \alpha) c(\alpha), \quad c \in \ell^{\mathbb{N}}(\mathbb{Z}^s).
 \]
And now to the real stuff

Ingredients in s variables:

- **Dilatation** matrix $\Xi \in \mathbb{Z}^{s \times s}$.
 - "Expanding": eigenvalues $| \cdot | > 1$ or $\|\Xi^{-k}\| \to 0 \Rightarrow \Xi^{-k}\mathbb{Z}^s$ dense.
 - "Isotropic:" alle eigenvalues have the same modulus. $\Rightarrow \kappa(\Xi^k) < C$.

- Refinable function Φ is $\mathbb{N} \times \mathbb{N}$–matrix valued (order!)
 \[
 \Phi = \Phi * A(\Xi \cdot) = \sum_{\alpha \in \mathbb{Z}^s} \Phi(\Xi \cdot - \alpha) A(\alpha), \quad A \in \ell^{\mathbb{N} \times \mathbb{N}}(\mathbb{Z}^s).
 \]

- Subdivision operator:
 \[
 S_A c = \sum_{\alpha \in \mathbb{Z}^s} A(\cdot - \Xi \alpha) c(\alpha), \quad c \in \ell^{\mathbb{N} \times K}(\mathbb{Z}^s).
 \]
Why matrix valued?

- Matrix valued masks \(\Rightarrow\) multivariate wavelets!
Why matrix valued?

- Matrix valued masks \Rightarrow *multiwavelets*!
- Simultaneous processing of vector signals:
Why matrix valued?

- Matrix valued masks \Rightarrow multiwavelets!
- Simultaneous processing of vector signals: RGB,
Why matrix valued?

- Matrix valued masks \(\Rightarrow\) *multiwavelets*!
- Simultaneous processing of vector signals: RGB, biosignals – EEG.
Why matrix valued?

- Matrix valued masks ⇒ \textit{multiwavelets}!
- Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.

The multivariate case – concepts
Why matrix valued?

- Matrix valued masks ⇒ multiwavelets!
- Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.
- **Reason:**
Why matrix valued?

- Matrix valued masks ⇒ *multiwavelets*!
- Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.
- **Reason:** Difference operator
Why matrix valued?

- Matrix valued masks ⇒ *multiwavelets*!
- Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.
- **Reason:** Difference operator

\[
\nabla c = \begin{bmatrix}
\nabla_1 \\
\vdots \\
\nabla_s
\end{bmatrix} \quad c = \begin{bmatrix}
c \cdot + \epsilon_1 - c \\
\vdots \\
c \cdot + \epsilon_s - c
\end{bmatrix}
\]
Why matrix valued?

- Matrix valued masks ⇒ *multiwavelets*!

- Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.

- **Reason:** Difference operator (discrete gradient)

\[
\nabla c = \begin{bmatrix}
\nabla_1 \\
\vdots \\
\nabla_s \\
\end{bmatrix}
c = \begin{bmatrix}
c(\cdot + \epsilon_1) - c \\
\vdots \\
c(\cdot + \epsilon_s) - c \\
\end{bmatrix}
\n\]
Why matrix valued?

- Matrix valued masks ⇒ *multiwavelets*

- Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.

- **Reason**: Difference operator (discrete gradient)

\[
\nabla c = \begin{bmatrix}
\nabla_1 \\
\vdots \\
\nabla_s
\end{bmatrix}
\]

\[
c = \begin{bmatrix}
(c \cdot + \epsilon_1) - c \\
\vdots \\
(c \cdot + \epsilon_s) - c
\end{bmatrix}
\]

is vector valued.
Why matrix valued?

- Matrix valued masks ⇒ multiwavelets!

- Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.

- **Reason:** Difference operator (discrete gradient)

\[
\nabla c = \begin{bmatrix}
\n\nabla_1 \\
\vdots \\
\n\nabla_s \\
\end{bmatrix}
\]

\[
c = \begin{bmatrix}
\c(\cdot + \epsilon_1) - c \\
\vdots \\
\c(\cdot + \epsilon_s) - c \\
\end{bmatrix}
\]

is vector valued.

- **Consequence:**
Why matrix valued?

- Matrix valued masks ⇒ *multiwavelets*!

- Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.

- **Reason:** Difference operator (discrete gradient)

\[
\nabla c = \begin{bmatrix}
\nabla_1 \\
\vdots \\
\nabla_s
\end{bmatrix}
\]

\[
c = \begin{bmatrix}
c (\cdot + \epsilon_1) - c \\
\vdots \\
c (\cdot + \epsilon_s) - c
\end{bmatrix}
\]

is vector valued.

- **Consequence:** \(\nabla S_A = S_B \nabla \)
Why matrix valued?

Matrix valued masks ⇒ multiwavelets!

Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.

Reason: Difference operator (discrete gradient)

\[\nabla c = \begin{bmatrix} \nabla_1 \\ \vdots \\ \nabla_s \end{bmatrix} \quad c = \begin{bmatrix} c(\cdot + \epsilon_1) - c \\ \vdots \\ c(\cdot + \epsilon_s) - c \end{bmatrix} \]

is vector valued.

Consequence: \(\nabla S_A = S_B \nabla \Rightarrow B \in \ell^{Ns \times Ns}(\mathbb{Z}^s) \).
Why matrix valued?

Matrix valued masks ⇒ multiwavelets!

Simultaneous processing of vector signals: RGB, biosignals – EEG. “Multivariate”.

Reason: Difference operator (discrete gradient)

\[
\nabla c = \begin{bmatrix}
\nabla_1 \\
\vdots \\
\nabla_s \\
\end{bmatrix}
c = \begin{bmatrix}
 c (\cdot + \epsilon_1) - c \\
\vdots \\
 c (\cdot + \epsilon_s) - c \\
\end{bmatrix}
\]

is vector valued.

Consequence: \(\nabla S_A = S_B \nabla \) ⇒ \(B \in \mathcal{L}^{N_s \times N_s} (\mathbb{Z}^s) \).

Matrix functions needed for iteration!
Why matrix valued?

- Matrix valued masks ⇒ *multiwavelets*!

- Simultaneous processing of vector signals: RGB, biosignals – EEG. "Multivariate".

- **Reason**: Difference operator (discrete gradient)

\[
\nabla c = \begin{bmatrix}
\nabla_1 \\
\vdots \\
\nabla_s
\end{bmatrix} c = \begin{bmatrix}
c (\cdot + \epsilon_1) - c \\
\vdots \\
c (\cdot + \epsilon_s) - c
\end{bmatrix}
\]

is **vector valued**.

- **Consequence**: \(\nabla S_A = S_B \nabla \) \(\Rightarrow B \in \ell^{Ns \times Ns}(\mathbb{Z}^s) \).

- Matrix functions **needed** for iteration! Higher order differentiability . . .
Factorization – the scalar case

Argument:
Factorization – the scalar case

Argument:

- Assumption: $\varphi = \varphi \ast a(\Xi \cdot)$ and φ stable.
Factorization – the scalar case

Argument:

□ Assumption: $\varphi = \varphi \ast a (\Xi \cdot)$ and φ stable.

□ $\Rightarrow S_\alpha$ converges.
Factorization – the scalar case

Argument:

□ Assumption: \(\varphi = \varphi \star a (\Xi \cdot) \) and \(\varphi \) stable.

□ \(\Rightarrow \) \(S_a \) converges.

□ \(\Rightarrow \) Exists \(B \in \ell^s \times s (\mathbb{Z}^s) \) such that

\[
\nabla S_a = S_B \nabla.
\]
Factorization – the scalar case

Argument:

- Assumption: \(\varphi = \varphi \ast a (\Xi \cdot) \) and \(\varphi \) stable.

- \(\Rightarrow \) \(S_a \) converges.

- \(\Rightarrow \) Exists \(B \in \ell^{s \times s} (\mathbb{Z}^s) \) such that

\[
\nabla S_a = S_B \nabla.
\]

- Can \(a^*(z) \) be factorized?
Factorization – the scalar case

Argument:

- Assumption: $\phi = \phi \ast a (\Xi \cdot)$ and ϕ stable.
- $\Rightarrow S_\alpha$ converges.
- \Rightarrow Exists $B \in \ell^s \times s (\mathbb{Z}^s)$ such that
 \[\nabla S_\alpha = S_B \nabla. \]
- Can $a^*(z)$ be factorized?
 - No!
Factorization – the scalar case

Argument:

☐ Assumption: $\varphi = \varphi \ast \alpha(\Xi \cdot)$ and φ stable.

☐ $\Rightarrow S_\alpha$ converges.

☐ \Rightarrow Exists $B \in \ell_s \times s(\mathbb{Z}^s)$ such that

$$\nabla S_\alpha = S_B \nabla.$$

☐ Can $\alpha^*(z)$ be factorized?

\triangledown No! $\alpha^*(z) = p(z)B^*(z)$ doesn’t even fit in matrix dimensions.
Factorization – the scalar case

Argument:

- Assumption: $\varphi = \varphi \ast a(\Xi \cdot)$ and φ stable.

- $\Rightarrow S_a$ converges.

- \Rightarrow Exists $B \in \ell^s \times s(\mathbb{Z}^s)$ such that

$$\nabla S_a = S_B \nabla.$$

- Can $a^*(z)$ be factorized?

 - No! $a^*(z) = p(z)B^*(z)$ doesn’t even fit in matrix dimensions.

 - Yes!
Factorization – the scalar case

Argument:

□ Assumption: $\varphi = \varphi \ast a(\Xi \cdot)$ and φ stable.

□ $\Rightarrow S_\alpha$ converges.

□ \Rightarrow Exists $B \in \ell^s \times s(\mathbb{Z}^s)$ such that

$$\nabla S_\alpha = S_B \nabla.$$

□ Can $a^*(z)$ be factorized?

▷ No! $a^*(z) = p(z)B^*(z)$ doesn’t even fit in matrix dimensions.

▷ Yes! It’s a matter of perspective ...
Factorization – the ideal case

- Laurent polynomials: $\Lambda = \mathbb{R} [z, z^{-1}]$,
Factorization – the ideal case

- **Laurent polynomials**: \(\Lambda = \mathbb{R}[z, z^{-1}] \),

\[\Lambda \ni f(z) \]
Factorization – the ideal case

- Laurent polynomials: \(\Lambda = \mathbb{R}[z, z^{-1}] \), finite sum

\[\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \]
Factorization – the ideal case

- **Laurent polynomials**: $\Lambda = \mathbb{R}[z, z^{-1}]$, **finite sum**

$$\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \quad z \in \mathbb{C}_x.$$
Factorization – the ideal case

- Laurent polynomials: \(\Lambda = \mathbb{R} [z, z^{-1}] \), finite sum

 \[
 \Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \quad z \in \mathbb{C}^s.
 \]

- For \(A = [a_1 \ldots a_s] \) define the Laurent ideal

 \[
 (z^{a_j} - 1)
 \]
Factorization – the ideal case

- **Laurent polynomials**: $\Lambda = \mathbb{R}[z, z^{-1}]$, finite sum

 $$\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \quad z \in \mathbb{C}_x^s.$$

- For $\Lambda = [a_1 \ldots a_s]$ define the **Laurent ideal**

 $$\sum_{j=1}^{s} q_j(z) (z^{a_j} - 1) : q_j \in \Lambda$$
Factorization – the ideal case

- **Laurent polynomials**: \(\Lambda = \mathbb{R} [z, z^{-1}] \), finite sum

\[
\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \quad z \in \mathbb{C}_x.
\]

- For \(\Lambda = [a_1 \ldots a_s] \) define the **Laurent ideal**

\[
\left\{ \sum_{j=1}^{s} q_j(z) (z^{a_j} - 1) : q_j \in \Lambda \right\}.
\]
Factorization – the ideal case

□ **Laurent polynomials:** \(\Lambda = \mathbb{R} \left[z, z^{-1} \right] \), finite sum

\[
\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_{\alpha} z^\alpha, \quad z \in \mathbb{C}_\times.
\]

□ For \(\Lambda = [a_1 \ldots a_s] \) define the **Laurent ideal**

\[
\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle := \left\{ \sum_{j=1}^{s} q_j(z) (z^{a_j} - 1) : q_j \in \Lambda \right\}.
\]
Factorization – the ideal case

- **Laurent polynomials**: \(\Lambda = \mathbb{R} \left[z, z^{-1} \right] \), finite sum

 \[\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \quad z \in \mathbb{C}_x. \]

- For \(A = [a_1 \ldots a_s] \) define the **Laurent ideal**

 \[\langle z^A - 1 \rangle := \langle z^{a_j} - 1 : j = 1, \ldots, s \rangle := \left\{ \sum_{j=1}^{s} q_j(z) (z^{a_j} - 1) : q_j \in \Lambda \right\}. \]
Factorization – the ideal case

- **Laurent polynomials**: $\Lambda = \mathbb{R}[z, z^{-1}]$, **finite sum**

$$\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \quad z \in \mathbb{C}_x^s.$$

- For $A = [a_1 \ldots a_s]$ define the **Laurent ideal**

$$\Lambda \supset \langle z^A - 1 \rangle := \langle z^{a_j} - 1 : j = 1, \ldots, s \rangle := \left\{ \sum_{j=1}^s q_j(z) (z^{a_j} - 1) : q_j \in \Lambda \right\}.$$
Factorization – the ideal case

- Laurent polynomials: $\Lambda = \mathbb{R}[z, z^{-1}]$, finite sum

$$
\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \quad z \in \mathbb{C}^s.
$$

- For $A = [a_1 \ldots a_s]$ define the Laurent ideal

$$
\Lambda \supset \langle z^A - 1 \rangle := \langle z^{a_j} - 1 : j = 1, \ldots, s \rangle := \left\{ \sum_{j=1}^{s} q_j(z) (z^{a_j} - 1) : q_j \in \Lambda \right\}.
$$

Theorem. $\nabla S_\alpha = S_B \nabla$ if and only if
Factorization – the ideal case

- *Laurent polynomials:* $\Lambda = \mathbb{R} \left[z, z^{-1} \right]$, **finite** sum

$$\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \quad z \in \mathbb{C}^\times.$$

- For $A = [a_1 \ldots a_s]$ define the *Laurent ideal*

$$\Lambda \supset \langle z^A - 1 \rangle := \langle z^{a_j} - 1 : j = 1, \ldots, s \rangle := \left\{ \sum_{j=1}^s q_j(z) (z^{a_j} - 1) : q_j \in \Lambda \right\}.$$

Theorem. $\nabla S_\alpha = S_B \nabla$ if and only if

$$a^* \in \langle z^\Xi - 1 \rangle : \langle z - 1 \rangle$$

Quotient ideal
Factorization – the ideal case

■ Laurent polynomials: \(\Lambda = \mathbb{R} \left[z, z^{-1} \right] \), finite sum

\[\Lambda \ni f(z) = \sum_{\alpha \in \mathbb{Z}^s} f_\alpha z^\alpha, \quad z \in \mathbb{C}_\times. \]

■ For \(A = [a_1 \ldots a_s] \) define the Laurent ideal

\[\Lambda \supseteq \langle z^A - 1 \rangle := \langle z^{a_j} - 1 : j = 1, \ldots, s \rangle := \left\{ \sum_{j=1}^s q_j(z) (z^{a_j} - 1) : q_j \in \Lambda \right\}. \]

Theorem. \(\nabla S_a = S_B \nabla \) if and only if

\[a^* \in \langle z^\Xi - 1 \rangle : \langle z - 1 \rangle \quad \text{and} \quad a^*(z) [z - 1] = B^*(z) [z^\Xi - 1]. \]

Quotient ideal & representation matrix
Quotient ideals

□ \(\mathcal{I}, \mathcal{J} \) Ideals in \(\Lambda \).
Quotient ideals

\(\mathcal{I}, \mathcal{J} \) Ideals in \(\Lambda \).

\(\Box \) Quotient ideal:
Quotient ideals

- \mathcal{I}, \mathcal{J} Ideals in Λ.

- **Quotient ideal:**

 $$\mathcal{I} : \mathcal{J} := \{ f \in \Lambda : f \cdot \mathcal{J} \subseteq \mathcal{I} \}$$
Quotient ideals

- \mathcal{I}, \mathcal{J} Ideals in Λ.
- **Quotient ideal:**
 \[\mathcal{I} : \mathcal{J} := \{ f \in \Lambda : f \cdot \mathcal{J} \subseteq \mathcal{I} \} \]
- For $s = 1$ we have $\langle z^2 - 1 \rangle : \langle z - 1 \rangle = \langle z + 1 \rangle$.
Quotient ideals

- \(\mathcal{I}, \mathcal{J} \) Ideals in \(\Lambda \).

- **Quotient ideal:**
 \[\mathcal{I} : \mathcal{J} := \{ f \in \Lambda : f \cdot \mathcal{J} \subseteq \mathcal{I} \} \]

- For \(s = 1 \) we have \(\langle z^2 - 1 \rangle : \langle z - 1 \rangle = \langle z + 1 \rangle \).

- Geometrically: \(V(\mathcal{I} : \mathcal{J}) = V(\mathcal{I}) \setminus V(\mathcal{J}) \).
Quotient ideals

- \mathcal{I}, \mathcal{J} Ideals in Λ.

- **Quotient ideal:**
 \[\mathcal{I} : \mathcal{J} := \{ f \in \Lambda : f \cdot \mathcal{J} \subseteq \mathcal{I} \} \]

- For $s = 1$ we have $\langle z^2 - 1 \rangle : \langle z - 1 \rangle = \langle z + 1 \rangle$.

- Geometrically: $V (\mathcal{I} : \mathcal{J}) = V(\mathcal{I}) \setminus V(\mathcal{J})$.

- Here: remove $(1, \ldots, 1)$.
Quotient ideals

- \mathcal{I}, \mathcal{J} Ideals in Λ.

- **Quotient ideal:**
 \[\mathcal{I} : \mathcal{J} := \{ f \in \Lambda : f \cdot \mathcal{J} \subseteq \mathcal{I} \} \]

- For $s = 1$ we have $\langle z^2 - 1 \rangle : \langle z - 1 \rangle = \langle z + 1 \rangle$.

- Geometrically: $V(\mathcal{I} : \mathcal{J}) = V(\mathcal{I}) \setminus V(\mathcal{J})$.

- Here: remove $(1, \ldots, 1)$.

- **H–Basis** of quotient ideals: masks of *minimal* support.
Quotient ideals

- \mathcal{I}, \mathcal{J} Ideals in Λ.

- **Quotient ideal:**
 \[\mathcal{I} : \mathcal{J} := \{ f \in \Lambda : f \cdot \mathcal{J} \subseteq \mathcal{I} \} \]

- For $s = 1$ we have $\langle z^2 - 1 \rangle : \langle z - 1 \rangle = \langle z + 1 \rangle$.

- Geometrically: $V(\mathcal{I} : \mathcal{J}) = V(\mathcal{I}) \setminus V(\mathcal{J})$.

- Here: remove $(1, \ldots, 1)$.

- H–Basis of quotient ideals: masks of minimal support.

- Λ is no graded Ring, but “Gröbner”–algorithms are possible.
The representation matrix

- Ideal basis in vector form:
The representation matrix

- Ideal basis in vector form:

\[\langle z^{A} - 1 \rangle \leftrightarrow [z^{A} - 1] \]
The representation matrix

- Ideal basis in vector form:

\[\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s] \]
The representation matrix

- Ideal basis in vector form:

\[\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s] \]

\[A = [a_1 \ldots a_s], \text{ column vectors} \]
The representation matrix

- Ideal basis in vector form:

\[\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s] \]

\[A = [a_1 \ldots a_s], \text{ column vectors} \]

- Now: \(a^* \in \langle z^\Xi - 1 \rangle : \langle z - 1 \rangle \)
The representation matrix

- Ideal basis in vector form:

\[\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s] \]

\[A = [a_1 \ldots a_s], \text{ column vectors} \]

- Now: \(a^* \in \langle z^\Xi - 1 \rangle : \langle z - 1 \rangle \Rightarrow \)
The representation matrix

□ Ideal basis in vector form:

\[\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s] \]

\[A = [a_1 \ldots a_s], \text{ column vectors} \]

□ Now: \(a^* \in \langle z^ζ - 1 \rangle : \langle z - 1 \rangle \Rightarrow \text{ for } j = 1, \ldots, s \)
The representation matrix

- Ideal basis in vector form:

\[
\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s]
\]

\[A = [a_1 \ldots a_s], \text{ column vectors}\]

- Now: \(a^* \in \langle z^\Xi - 1 \rangle : \langle z - 1 \rangle \Rightarrow \text{for } j = 1, \ldots, s \)

\[(z_j - 1) \ a^*(z)\]
The representation matrix

□ Ideal basis in vector form:

\[
\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \iff [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s]
\]

\[A = [a_1 \ldots a_s],\text{ column vectors}\]

□ Now: \(a^* \in \langle z^\Xi - 1 \rangle : \langle z - 1 \rangle \Rightarrow \text{ for } j = 1, \ldots, s\)

\[
\langle z^\Xi - 1 \rangle \ni (z_j - 1) a^*(z)
\]
The representation matrix

□ Ideal basis in vector form:

\[\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s] \]

\[A = [a_1 \ldots a_s], \text{ column vectors} \]

□ Now: \(a^* \in \langle z^{\Xi} - 1 \rangle : \langle z - 1 \rangle \Rightarrow \text{for } j = 1, \ldots, s \)

\[\langle z^{\Xi} - 1 \rangle \ni (z_j - 1) a^*(z) \]

\((z^{\xi_k} - 1), \)
The representation matrix

- Ideal basis in vector form:

\[\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow \begin{bmatrix} z^A - 1 \end{bmatrix} = [z^{a_j} - 1 : j = 1, \ldots, s] \]

\[A = [a_1 \ldots a_s], \text{column vectors} \]

- Now: \(a^* \in \langle z^\Xi - 1 \rangle : \langle z - 1 \rangle \Rightarrow \text{for} j = 1, \ldots, s \)

\[\langle z^\Xi - 1 \rangle \ni (z_j - 1) a^*(z) = \sum_{k=1}^{s} b_{jk}^*(z) (z^{\xi_k} - 1), \]
The representation matrix

- Ideal basis in vector form:

\[\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s] \]

\[A = [a_1 \ldots a_s], \text{ column vectors} \]

- Now: \(a^* \in \langle z^\Xi - 1 \rangle : \langle z - 1 \rangle \Rightarrow \text{ for } j = 1, \ldots, s \)

\[\langle z^\Xi - 1 \rangle \ni (z_j - 1) \ a^*(z) = \sum_{k=1}^{s} b^*_{jk}(z) \ (z^{\xi_k} - 1), \]

\[a^*(z) \ [z - 1] = B^*(z) \ [z^\Xi - 1], \]
The representation matrix

\[\langle z^{a_j} - 1 : j = 1, \ldots, s \rangle = \langle z^A - 1 \rangle \leftrightarrow [z^A - 1] = [z^{a_j} - 1 : j = 1, \ldots, s] \]

\[A = [a_1 \ldots a_s], \text{ column vectors} \]

Now: \(a^* \in \langle z^\Xi - 1 \rangle : \langle z - 1 \rangle \Rightarrow \text{ for } j = 1, \ldots, s \)

\[\langle z^\Xi - 1 \rangle \ni (z_j - 1) a^*(z) = \sum_{k=1}^{s} b^*_{jk}(z) (z^{\xi_k} - 1), \]

\[a^*(z) [z - 1] = B^*(z) [z^\Xi - 1], \]

Defines and computes representation matrix \(B^* \).
Factorization – the matrix case

Consider “submasks”

\[A_{\gamma} := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \]
Factorization – the matrix case

Consider “submasks”

\[A_{\gamma} := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \cong \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \cong \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A(\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1]^s \cap \mathbb{Z}^s \cong \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and

\[A_\gamma y = y, \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \simeq \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and

\[A_\gamma y = y, \quad \gamma \in \Gamma \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \cong \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and

\[y \in \mathbb{R}^n : A_\gamma y = y, \quad \gamma \in \Gamma \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \sim \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and

\[\mathcal{E}_A := \{ y \in \mathbb{R}^n : A_\gamma y = y, \ \gamma \in \Gamma \} \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \simeq \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and

\[n := \dim \mathbb{E}_A, \quad \mathbb{E}_A := \{ y \in \mathbb{R}^n : A_\gamma y = y, \ \gamma \in \Gamma \} \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \cong \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and invertible matrix \(V \) such that

\[n := \dim E_A, \quad E_A := \{ y \in \mathbb{R}^n : A_\gamma y = y, \ \gamma \in \Gamma \} =: V \mathbb{R}^n. \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \cong \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and invertible matrix \(V \) such that

\[n := \dim E_A, \quad E_A := \{ y \in \mathbb{R}^n : A_\gamma y = y, \gamma \in \Gamma \} =: V \mathbb{R}^n. \]

Then:
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A(\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \simeq \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and invertible matrix \(V \) such that

\[n := \dim E_A, \quad E_A := \{ y \in \mathbb{R}^n : A_\gamma y = y, \ \gamma \in \Gamma \} =: V \mathbb{R}^n. \]

Then:

\[\nabla S_A = S_B \nabla, \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \simeq \mathbb{Z}^s / \Xi \mathbb{Z}^s, \]

and invertible matrix \(V \) such that

\[n := \dim E_A, \quad E_A := \{ y \in \mathbb{R}^n : A_\gamma y = y, \ \gamma \in \Gamma \} =: V \mathbb{R}^n. \]

Then:

\[\nabla S_A = S_B \nabla, \quad \nabla := \nabla_{V,n} \]
Consider “submasks”

\[A_\gamma := \sum_{\alpha \in \mathbb{Z}^s} A (\gamma - \Xi \alpha), \quad \gamma \in \Gamma := \Xi [0, 1)^s \cap \mathbb{Z}^s \cong \mathbb{Z}^s/\Xi \mathbb{Z}^s, \]

and invertible matrix \(V \) such that

\[n := \dim \mathbb{E}_A, \quad \mathbb{E}_A := \{ y \in \mathbb{R}^n : A_\gamma y = y, \gamma \in \Gamma \} =: V \mathbb{R}^n. \]

Then:

\[\nabla S_A = S_B \nabla, \quad \nabla := \nabla_{V,n} := \begin{bmatrix} \nabla_1 I_n & 0 \\ 0 & I_{N-n} \\ \vdots & \vdots \\ \nabla_s I_n & 0 \\ 0 & I_{N-n} \end{bmatrix} V^{-1}. \]
Convergence of S_B?

For $S_A = \nabla^{-1} S_B \nabla$ we only need behavior of S_B on

$$\nabla \ell^{N \times N} (\mathbb{Z}^s) \subset \nabla \ell^{Ns \times N} (\mathbb{Z}^s).$$
Convergence of S_B?

\[\Box \quad \text{For } S_A = \nabla^{-1} S_B \nabla \text{ we only need behavior of } S_B \text{ on } \]

\[\nabla \ell^{N \times N} \left(\mathbb{Z}^s \right) \subset \nabla \ell^{Ns \times N} \left(\mathbb{Z}^s \right). \]

Proper subspace for $s > 1$!
Convergence of S_B?

- For $S_A = \nabla^{-1}S_B\nabla$ we only need behavior of S_B on

 $$\nabla \ell^{N\times N}(\mathbb{Z}^s) \subset \nabla \ell^{Ns\times N}(\mathbb{Z}^s).$$

 Proper subspace for $s > 1$!

- **Example**: $N = 1$ (scalar)
Convergence of S_B?

□ For $S_A = \nabla^{-1} S_B \nabla$ we only need behavior of S_B on

$$\nabla \ell^{N \times N} (\mathbb{Z}^s) \subset \nabla \ell^{Ns \times N} (\mathbb{Z}^s).$$

Proper subspace for $s > 1$!

□ **Example:** $N = 1$ (scalar)

$$(\nabla c)^* (z)$$
Convergence of S_B?

- For $S_A = \nabla^{-1} S_B \nabla$ we only need behavior of S_B on

$$\nabla \ell^{N \times N}(\mathbb{Z}^s) \subset \nabla \ell^{Ns \times N}(\mathbb{Z}^s).$$

Proper subspace for $s > 1$!

- Example: $N = 1$ (scalar)

\[
(\nabla c)^*(z) = \begin{bmatrix}
z_1 - 1 \\
\vdots \\
z_s - 1
\end{bmatrix}
\begin{bmatrix}
c^*(z)
\end{bmatrix}
\]
Convergence of S_B?

- For $S_A = \nabla^{-1} S_B \nabla$ we only need behavior of S_B on

$$\nabla \ell^{\mathbb{N} \times \mathbb{N}} (\mathbb{Z}^s) \subset \nabla \ell^{\mathbb{N}_s \times \mathbb{N}} (\mathbb{Z}^s).$$

Proper subspace for $s > 1$!

- Example: $N = 1$ (scalar)

$$(\nabla c)^*(z) = \begin{bmatrix} z_1 - 1 \\ \vdots \\ z_s - 1 \end{bmatrix} c^*(z)$$

Dependency between Components
Convergence of S_B?

For $S_A = \nabla^{-1} S_B \nabla$ we only need behavior of S_B on

$$\nabla \ell^{N \times N} (\mathbb{Z}^s) \subset \nabla \ell^{Ns \times N} (\mathbb{Z}^s).$$

Proper subspace for $s > 1$!

Example: $N = 1$ (scalar)

$$(\nabla c)^*(z) = \begin{bmatrix} z_1 - 1 \\ \vdots \\ z_s - 1 \end{bmatrix} c^*(z) \Rightarrow q^T (\nabla c)^* = 0, \quad q \in \mathbb{S}(z - 1)$$

Dependency between Components
Convergence of S_B?

- For $S_A = \nabla^{-1} S_B \nabla$ we only need behavior of S_B on

\[
\nabla \ell^{N \times N}(Z)^s \subset \nabla \ell^{Ns \times N}(Z)^s.
\]

Proper subspace for $s > 1$!

- **Example:** $N = 1$ (scalar)

\[
(\nabla c)^*(z) = \begin{bmatrix}
 z_1 - 1 \\
 \vdots \\
 z_s - 1
\end{bmatrix}
\]

\[
c^*(z) \quad \Rightarrow \quad q^T (\nabla c)^* = 0, \quad q \in S(z - 1)
\]

Dependency between Components – syzygies
Convergence of S_B?

- For $S_A = \nabla^{-1}S_B\nabla$ we only need behavior of S_B on
 $$\nabla \ell^N \times N (\mathbb{Z}^s) \subset \nabla \ell^{N_s} \times N (\mathbb{Z}^s).$$

 Proper subspace for $s > 1$!

- **Example:** $N = 1$ (scalar)

 $$(\nabla c)^*(z) = \begin{bmatrix} z_1 - 1 \\ \vdots \\ z_s - 1 \end{bmatrix} c^*(z) \Rightarrow q^T (\nabla c)^* = 0, \quad q \in \mathbb{S}(z - 1)$$

 Dependency between Components – syzygies

- “Smoothing” is difficult: B has to be of very particular form!
Limited horizon

Theorem. [Latour, Müller & Nickel: $N = 1$; Charina, Conti & Sauer: $\Xi = 2I$]
S_A converges if and only if
Limited horizon

Theorem. [Latour, Müller & Nickel: $N = 1$; Charina, Conti & Sauer: $\Xi = 21$]

S_A converges if and only if $\nabla S_A = S_B \nabla$ and
Limited horizon

Theorem. [Latour, Müller & Nickel: \(N = 1 \); Charina, Conti & Sauer: \(\Xi = 2 \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\frac{\| S_B^r c \|}{\| c \|}
\]
Limited horizon

Theorem. [Latour, Müller & Nickel: \(N = 1 \); Charina, Conti & Sauer: \(\Xi = 21 \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\frac{\|S_B^r c\|}{\|c\|} : c \in \nabla \ell_p^N (\mathbb{Z}^s)
\]
Limited horizon

Theorem. [Latour, Müller & Nickel: $N = 1$; Charina, Conti & Sauer: $\Xi = 2I$]

S_A converges if and only if $\nabla S_A = S_B \nabla$ and

$$\sup \left\{ \frac{\|S_B^r c\|}{\|c\|} : c \in \nabla \ell_p^N (\mathbb{Z}^s) \right\}^{1/r}$$
Limited horizon

Theorem. [Latour, Müller & Nickel: \(N = 1 \); Charina, Conti & Sauer: \(\Xi = 2I \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\limsup_{r \to \infty} \sup \left\{ \frac{\| S_B^r c \|}{\| c \|} : c \in \nabla \ell_p^N (\mathbb{Z}^s) \right\}^{1/r}
\]
Limited horizon

Theorem. [Latour, Müller & Nickel: \(N = 1 \); Charina, Conti & Sauer: \(\mathcal{E} = 21 \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\rho(S_B | \nabla) := \limsup_{r \to \infty} \sup \left\{ \frac{\| S_B^r c \|}{\| c \|} : c \in \nabla \ell_p^N (\mathbb{Z}^s) \right\}^{1/r}
\]
Limited horizon

Theorem. [Latour, Müller & Nickel: \(N = 1 \); Charina, Conti & Sauer: \(\Xi = 2I \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\rho (S_B \mid \nabla) := \limsup_{r \to \infty} \sup \left\{ \frac{\| S_B^r c \|}{\| c \|} : c \in \nabla \ell_p^N (\mathbb{Z}^s) \right\}^{1/r} \ < \ (\det \Xi)^{1/p}.
\]
Limited horizon

Theorem. [Latour, Müller & Nickel: \(N = 1 \); Charina, Conti & Sauer: \(\Xi = 2I \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\rho (S_B \mid \nabla) := \limsup_{r \to \infty} \sup \left\{ \frac{\|S_B^r c\|}{\|c\|} : c \in \nabla \ell_p^N (\mathbb{Z}^s) \right\}^{1/r} < (\det \Xi)^{1/p}.
\]

Restricted spectral radius!
Limited horizon

Theorem. [Latour, Müller & Nickel: $N = 1$; Charina, Conti & Sauer: $\Xi = 2I$]

S_A converges if and only if $\nabla S_A = S_B \nabla$ and

$$\rho (S_B | \nabla) := \limsup_{r \to \infty} \sup \left\{ \frac{\|S_B^r c\|}{\|c\|} : c \in \nabla \ell^N_p (\mathbb{Z}^s) \right\}^{1/r} < (\det \Xi)^{1/p}.$$

Restricted spectral radius!

□ Restricted convergence: $S_A c \to F_c = \Phi * c$
Limited horizon

Theorem. [Latour, Müller & Nickel: $N = 1$; Charina, Conti & Sauer: $\Xi = 2\mathbb{I}$]

S_A converges if and only if $\nabla S_A = S_B \nabla$ and

$$\rho (S_B | \nabla) := \limsup_{r \to \infty} \sup \left\{ \frac{\|S_B^r c\|}{\|c\|} : c \in \nabla \ell^N_p (\mathbb{Z}^s) \right\}^{1/r} < (\det \Xi)^{1/p}.$$

Restricted spectral radius!

□ Restricted *convergence*: $S_A c \to F_c = \Phi \ast c$ for $c \in \nabla \ell_p (\mathbb{Z}^s)$.

Restrictions
Limited horizon

Theorem. [Latour, Müller & Nickel: $N = 1$; Charina, Conti & Sauer: $\Xi = 2\mathbb{I}$]

S_A converges if and only if $\nabla S_A = S_B \nabla$ and

$$
\rho \left(S_B \mid \nabla \right) := \limsup_{r \to \infty} \sup \left\{ \frac{\| S_B^r c \|}{\| c \|} : c \in \nabla \ell_p^N (\mathbb{Z}^s) \right\}^{1/r} < (\text{det} \, \Xi)^{1/p}.
$$

Restricted spectral radius!

- **Restricted convergence:** $S_A c \to F_c = \Phi \ast c$ for $c \in \nabla \ell_p (\mathbb{Z}^s)$.

- **Restricted stability:** $\| \Phi \ast c \| \simeq \| c \|$
Limited horizon

Theorem. [Latour, Müller & Nickel: \(N = 1 \); Charina, Conti & Sauer: \(\Xi = 2I \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\rho \left(S_B \mid \nabla \right) := \limsup_{r \to \infty} \sup \left\{ \frac{\| S_B^r c \|}{\| c \|} : c \in \nabla \ell^N_p (\mathbb{Z}^s) \right\}^{1/r} < (\det \Xi)^{1/p}.
\]

Restricted spectral radius!

☐ Restricted convergence: \(S_A c \to F_c = \Phi \ast c \) for \(c \in \nabla \ell_p (\mathbb{Z}^s) \).

☐ Restricted stability: \(\| \Phi \ast c \| \simeq \| c \| \) for \(c \in \nabla \ell_p (\mathbb{Z}^s) \).
Limited horizon

Theorem. [Latour, Müller, Nickel: \(N = 1 \); Charina, Conti, Sauer: \(\Xi = 2I \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\rho (S_B | \nabla) := \limsup_{r \to \infty} \sup \left\{ \frac{\| S^r_B c \|}{\| c \|} : c \in \nabla \ell^N_p (\mathbb{Z}^s) \right\}^{1/r} < (\det \Xi)^{1/p}.
\]

Restricted spectral radius!

\(\square \) Restricted convergence: \(S_A c \to F_c = \Phi * c \) for \(c \in \nabla \ell_p (\mathbb{Z}^s) \).

\(\square \) Restricted stability: \(\| \Phi * c \| \simeq \| c \| \) for \(c \in \nabla \ell_p (\mathbb{Z}^s) \).

\(\square \) Restricted refinability:

\[
\Phi = \Phi * A (\Xi).
\]
Limited horizon

Theorem. [Latour, Müller & Nickel: \(N = 1 \); Charina, Conti & Sauer: \(\Xi = 21 \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\rho \left(S_B \mid \nabla \right) := \limsup_{r \to \infty} \sup \left\{ \frac{\|S_B^r c\|}{\|c\|} : c \in \nabla \ell^N_p (\mathbb{Z}^s) \right\}^{1/r} < (\det \Xi)^{1/p}.
\]

Restricted spectral radius!

\(\Box\) **Restricted convergence:** \(S_A c \to F_c = \Phi \ast c \) for \(c \in \nabla \ell^p_p (\mathbb{Z}^s) \).

\(\Box\) **Restricted stability:** \(\|\Phi \ast c\| \sim \|c\| \) for \(c \in \nabla \ell^p_p (\mathbb{Z}^s) \).

\(\Box\) **Restricted refinability:**

\[\Phi = \Phi \ast A (\Xi \cdot) \Leftrightarrow \Phi \ast c = \Phi \ast S_A c (\Xi \cdot) , \]
Limited horizon

Theorem. [Latour, Müller & Nickel: \(N = 1 \); Charina, Conti & Sauer: \(\Xi = 2 \)]

\(S_A \) converges if and only if \(\nabla S_A = S_B \nabla \) and

\[
\rho (S_B | \nabla) := \limsup_{r \to \infty} \sup \left\{ \frac{\|S_B^r c\|}{\|c\|} : c \in \nabla \ell_p^N (\mathbb{Z}^s) \right\}^{1/r} < (\det \Xi)^{1/p}.
\]

Restricted spectral radius!

- **Restricted convergence:** \(S_A c \to F_c = \Phi \ast c \) for \(c \in \nabla \ell_p (\mathbb{Z}^s) \).
- **Restricted stability:** \(\|\Phi \ast c\| \sim \|c\| \) for \(c \in \nabla \ell_p (\mathbb{Z}^s) \).
- **Restricted refinability:**

\[
\Phi = \Phi \ast \mathbf{A} (\Xi \cdot) \quad \Leftrightarrow \quad \Phi \ast c = \Phi \ast S_A c (\Xi \cdot), \quad c \in \nabla \ell_p (\mathbb{Z}^s).
\]
And what about the constant 2?

- Reminder:
And what about the constant 2?

□ Reminder: For \(s = N = 1 \):

\[\varphi \text{ differentiable } \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.} \]
And what about the constant 2?

□ **Reminder:** For \(s = N = 1 \):

\[
\varphi \text{ differentiable } \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.}
\]

□ **How to prove “⇒”:**
And what about the constant 2?

□ **Reminder:** For $s = N = 1$:

\[\varphi \text{ differentiable} \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.} \]

□ How to prove “⇒”:

▷ Set $\psi := \varphi' \nabla^{-1}$.

Renormalization 19
And what about the constant 2?

□ **Reminder:** For $s = N = 1$:

\[\varphi \text{ differentiable} \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.} \]

□ How to prove “⇒”:

▷ Set $\psi := \varphi' \nabla^{-1}$, i.e. $\psi \nabla = \varphi'$.
And what about the constant 2?

□ **Reminder:** For $s = N = 1$:

\[\varphi \text{ differentiable} \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.} \]

□ **How to prove “⇒”:**

▷ Set $\psi := \varphi' \nabla^{-1}$, i.e. $\psi \nabla = \varphi'$, hence $\psi \ast \nabla \mathbf{c} = \phi' \ast \mathbf{c}$.
And what about the constant 2?

□ **Reminder:** For \(s = N = 1 \):

\[\varphi \text{ differentiable } \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.} \]

□ **How to prove “⇒”:**

- Set \(\psi := \varphi' \nabla^{-1} \), i.e. \(\psi \nabla = \varphi' \), hence \(\psi \ast \nabla c = \phi' \ast c \).
- \(\psi \) is stable.
And what about the constant 2?

□ **Reminder:** For $s = N = 1$:

\[\varphi \text{ differentiable } \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.} \]

□ **How to prove “⇒”:**

▷ Set $\psi := \varphi' \nabla^{-1}$, i.e. $\psi \nabla = \varphi'$, hence $\psi \ast \nabla c = \phi' \ast c$.
▷ ψ is stable.
▷ ψ is b–refinable.
And what about the constant 2?

- **Reminder:** For \(s = N = 1 \):
 \[
 \varphi \text{ differentiable} \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.}
 \]

- **How to prove “⇒”:**
 - Set \(\psi := \varphi' \nabla^{-1} \), i.e. \(\psi \nabla = \varphi' \), hence \(\psi \ast \nabla c = \phi' \ast c \).
 - \(\psi \) is stable.
 - \(\psi \) is \(b \)-refinable.
 - \(S_b \) converges.
And what about the constant 2?

□ **Reminder:** For \(s = N = 1 \):

\[
\varphi \text{ differentiable} \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.}
\]

□ **How to prove “⇒”:**

- Set \(\psi := \varphi' \nabla^{-1} \), i.e. \(\psi \nabla = \varphi' \), hence \(\psi \ast \nabla c = \varphi' \ast c \).
- \(\psi \) is stable.
- \(\psi \) is \(b \)-refinable.
- \(S_b \) converges.

□ **Factor \(\frac{1}{2} \)** caused by differentiation of

\[
\varphi = \varphi \ast a (2\cdot).
\]
And what about the constant 2?

□ Reminder: For \(s = N = 1 \):

\[
\phi \text{ differentiable} \iff \nabla S_a = \frac{1}{2} S_b \nabla \text{ and } S_b \text{ converges.}
\]

□ How to prove “\(\Rightarrow \)”:

- Set \(\psi := \phi' \nabla^{-1} \), i.e. \(\psi \nabla = \phi' \), hence \(\psi \ast \nabla c = \phi' \ast c \).
- \(\psi \) is stable.
- \(\psi \) is \(b \)-refinable.
- \(S_b \) converges.

□ Factor \(\frac{1}{2} \) caused by differentiation of

\[
\phi = \phi \ast a (2 \cdot).
\]

□ And for general \(\Xi \)?
The general case

\(\Box \quad D = \begin{bmatrix} \frac{\partial}{\partial x_i} : j = 1, \ldots, s \end{bmatrix} \) gradient.
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \] gradient.

\[\square \] Same procedure:
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \] gradient.

Same procedure: \(\Phi \) stable und \(A \)-refinable relative to \(\mathcal{L} \subseteq \ell^{N \times N} (\mathbb{Z}^s) \)
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \text{ gradient.} \]

\[\square \text{ Same procedure: } \Phi \text{ stable und } A\text{--refinable relative to } \mathcal{L} \subseteq \ell^{N \times N} (\mathbb{Z}^s) \]

\[\text{Set } \Psi \nabla = D \Phi. \]
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \text{ gradient.} \]

\[\square \text{ Same procedure: } \Phi \text{ stable und } A\text{–refinable relative to } \mathcal{L} \subseteq \ell^{N \times N} (\mathbb{Z}^s). \]

\[\triangleright \text{ Set } \Psi \nabla = D\Phi. \]

\[\triangleright \Psi \text{ is stable.} \]
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \text{ gradient.} \]

\[\square \text{ Same procedure: } \Phi \text{ stable und } A-\text{refinable relative to } \mathcal{L} \subseteq \ell^{N \times N}(\mathbb{Z}^s) \]

\[\triangleright \text{ Set } \Psi \nabla = D\Phi. \]
\[\triangleright \Psi \text{ is stable, restricted on } \nabla \mathcal{L}. \]
The general case

\(\square \ D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \) gradient.

\(\square \) Same procedure: \(\Phi \) stable und \(A \)-refinable relative to \(\mathcal{L} \subseteq \ell^{N \times N} (\mathbb{Z}^s) \)

\(\triangleright \) Set \(\Psi \nabla = D\Phi. \)
\(\triangleright \) \(\Psi \) is stable, restricted on \(\nabla \mathcal{L}. \)
\(\triangleright \) Refinability:
The general case

\[\nabla = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \text{ gradient.} \]

\[\text{□ Same procedure: } \Phi \text{ stable und } A-\text{refinable relative to } \mathcal{L} \subset \ell^{N \times N} (\mathbb{Z}^s) \]

\[\nabla \Psi = D \Phi. \]

\[\Psi \text{ is stable, restricted on } \nabla \mathcal{L}. \]

\[\text{Refinability:} \]

\[\Psi \ast c = \]
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \text{ gradient.} \]

\[\text{Same procedure: } \Phi \text{ stable und } A \text{–refinable relative to } \mathcal{L} \subseteq \ell^{N \times N} (\mathbb{Z}^s) \]

\[\triangleright \text{Set } \Psi \nabla = D\Phi. \]
\[\triangleright \Psi \text{ is stable, restricted on } \nabla \mathcal{L}. \]
\[\triangleright \text{Refinability:} \]

\[\Psi \ast c = \Psi \ast S_B c (\Xi) , \quad c \in \nabla \mathcal{L}. \]
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \text{ gradient.} \]

\[\text{Same procedure: } \Phi \text{ stable und } A-\text{refinable relative to } \mathcal{L} \subseteq \ell^{N \times N} (\mathbb{Z}^s) \]

\[\triangleright \text{ Set } \Psi \nabla = D \Phi. \]

\[\triangleright \Psi \text{ is stable, restricted on } \nabla \mathcal{L}. \]

\[\triangleright \text{ Refinability: } \]

\[\Psi \ast c = (I_N \otimes \Xi^T) \Psi \ast S_B c (\Xi \cdot), \quad c \in \nabla \mathcal{L}. \]
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \] gradient.

Same procedure: Φ stable und A–refinable relative to \(\mathcal{L} \subseteq \ell^{N \times N} (\mathbb{Z}^s) \)

- Set \(\Psi \nabla = D \Phi \).
- \(\Psi \) is stable, restricted on \(\nabla \mathcal{L} \).
- Refinability:

\[\Psi * c = (I_N \otimes \Xi^T) \Psi * S_B c (\Xi \cdot), \quad c \in \nabla \mathcal{L}. \]

\(S_B \) converges restricted

\[\lim_{r \to \infty} S_B^r c = \Phi * c, \quad c \in \nabla \mathcal{L}. \]
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \text{ gradient.} \]

\[\text{Same procedure: } \Phi \text{ stable und } A\text{–refinable relative to } \mathcal{L} \subseteq \ell^{N \times N}(\mathbb{Z}^s) \]

- Set \(\Psi \nabla = D\Phi \).
- \(\Psi \) is stable, restricted on \(\nabla \mathcal{L} \).
- Refinability:
 \[\Psi \ast c = (I_N \otimes \Xi^T) \Psi \ast S_B c (\Xi \cdot), \quad c \in \nabla \mathcal{L}. \]

- \(S_B \) converges restricted and renormalized (\(X = I_N \otimes \Xi^T \))

\[\lim_{r \to \infty} X^r S_B^r c = \Phi \ast c, \quad c \in \nabla \mathcal{L}. \]
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \text{ gradient.} \]

- Same procedure: \(\Phi \) stable und \(A \)-refinable relative to \(\mathcal{L} \subseteq \ell^{N \times N} (\mathbb{Z}^s) \)
 - Set \(\Psi \nabla = D\Phi \).
 - \(\Psi \) is stable, restricted on \(\nabla \mathcal{L} \).
 - Refinability:
 \[\Psi * c = (I_N \otimes \Xi^T) \Psi * S_B c (\Xi \cdot), \quad c \in \nabla \mathcal{L}. \]

- \(S_B \) converges restricted and renormalized \((X = I_N \otimes \Xi^T) \)
 \[\lim_{r \to \infty} X^r S_B^r c = \Phi * c, \quad c \in \nabla \mathcal{L}. \]

- **But:**
 - Renormalization 20
The general case

\[D = \left[\frac{\partial}{\partial x_j} : j = 1, \ldots, s \right] \text{gradient.} \]

\[\square \text{Same procedure: } \Phi \text{ stable und } A\text{–refinable relative to } \mathcal{L} \subseteq \ell^{N \times N} (\mathbb{Z}^s) \]

\[\Rightarrow \text{Set } \Psi \nabla = D\Phi. \]
\[\Rightarrow \Psi \text{ is stable, restricted on } \nabla \mathcal{L}. \]
\[\Rightarrow \text{Refinability:} \]
\[\Psi \ast c = (I_N \otimes \Xi^T) \Psi \ast S_B c (\Xi \cdot), \quad c \in \nabla \mathcal{L}. \]

\[\Rightarrow S_B \text{ converges restricted and renormalized } (X = I_N \otimes \Xi^T) \]
\[\lim_{r \to \infty} X^r S_B^r c = \Phi \ast c, \quad c \in \nabla \mathcal{L}. \]

\[\square \text{But: Convergence is too much!} \]
And one more concept

Definition. S_A is called subconvergent with normalization matrix X if
And one more concept

Definition. \(S_A \) is called subconvergent with normalization matrix \(X \) if

\[
\lim_{k \to \infty} X^{r(k)} S_B^{r(k)} c = \Phi \ast c,
\]
And one more concept

Definition. \(S_A \) is called subconvergent with normalization matrix \(X \) if

\[
\lim_{k \to \infty} X^{r(k)} S_B^{r(k)} c = \Phi \ast c, \quad r : \mathbb{N} \to \mathbb{N} \text{ monotonically increasing.}
\]
And one more concept

Definition. S_A is called subconvergent with normalization matrix X if

$$\lim_{k \to \infty} X^{r(k)} S_B^{r(k)} c = \Phi \ast c, \quad r : \mathbb{N} \to \mathbb{N} \text{ monotonically increasing.}$$

Convergence of subsequences
And one more concept

Definition. \(S_A \) is called subconvergent with normalization matrix \(X \) if

\[
\lim_{k \to \infty} X^{r(k)} S_B^{r(k)} c = \Phi \ast c, \quad r : \mathbb{N} \to \mathbb{N} \text{ monotonically increasing.}
\]

Convergence of subsequences

- \(X \) isotropic
And one more concept

Definition. S_A is called subconvergent with normalization matrix X if

$$\lim_{k \to \infty} X^{r(k)} S_B^{r(k)} c = \Phi * c, \quad r : \mathbb{N} \to \mathbb{N} \text{ monotonically increasing.}$$

Convergence of subsequences

\square X isotropic \Rightarrow $W = (\det X)^{-1/s} X$ has only eigenvalues $| \cdot | = 1$.
And one more concept

Definition. S_A is called **subconvergent with** normalization matrix X if

$$
\lim_{k \to \infty} X^{r(k)} S_B^{r(k)} c = \Phi \ast c,
$$

$r : \mathbb{N} \to \mathbb{N}$ monotonically increasing.

Convergence of subsequences

□ X isotropic \Rightarrow $W = (\det X)^{-1/s} X$ has only eigenvalues $| \cdot | = 1$.
W^r contains convergent subsequence.
And one more concept

Definition. \(S_A \) is called subconvergent with normalization matrix \(X \) if

\[
\lim_{k \to \infty} X^{r(k)} S_B^{r(k)} c = \Phi \ast c, \quad r : \mathbb{N} \to \mathbb{N} \text{ monotonically increasing.}
\]

Convergence of subsequences

- \(X \) isotropic \(\Rightarrow \) \(W = (\det X)^{-1/s} X \) has only eigenvalues \(| \cdot | = 1\).
 \(W^r \) contains convergent subsequence.

- Subconvergence is **not** excentric:
And one more concept

Definition. \(S_A \) is called subconvergent with normalization matrix \(X \) if

\[
\lim_{k \to \infty} X^{r(k)} S_B^{r(k)} c = \Phi \ast c, \quad r : \mathbb{N} \to \mathbb{N} \text{ monotonically increasing.}
\]

Convergence of subsequences

- \(X \) isotropic \(\Rightarrow \) \(W = (\det X)^{-1/s} X \) has only eigenvalues \(| \cdot | = 1 \).
 \(W^r \) contains convergent subsequence.

- Subconvergence is not excentric:

 \(S_a \) convergent \(\Rightarrow \) \(S_{-a} = -S_a \) subconvergent.
And one more concept

Definition. \(S_A \) is called subconvergent with normalization matrix \(X \) if

\[
\lim_{k \to \infty} X^{r(k)} S_B^{r(k)} c = \Phi \ast c, \quad r : \mathbb{N} \to \mathbb{N} \text{ monotonically increasing.}
\]

Convergence of subsequences

- \(X \) isotropic \(\Rightarrow \) \(W = (\det X)^{-1/s} X \) has only eigenvalues \(| \cdot | = 1\). \(W^r \) contains convergent subsequence.

- Subconvergence is not excentric:

\(S_a \) convergent \(\Rightarrow \) \(S_{-a} = -S_a \) subconvergent.

Happens for \(\varphi = \varphi \ast a (-2 \cdot) \).
Subconvergence

- Assumption: X isotropic.
Subconvergence

- **Assumption:** X isotropic.

- Set $\sigma = \rho(X)$.
Subconvergence

- **Assumption:** X isotropic.
- Set $\sigma = \rho(X)$.
- Subconvergence depends only on σ!
Subconvergence

□ Assumption: \(X \) isotropic.

□ Set \(\sigma = \rho(X) \).

□ Subconvergence depends only on \(\sigma \! \).

Lemma. \(S_A \) is subconvergent for \(X \) if and only if \(S_{\sigma A} \) is subconvergent.
Subconvergence

- **Assumption**: X isotropic.

- Set $\sigma = \rho(X)$.

- Subconvergence depends only on σ!

Lemma. $S_\mathcal{A}$ is subconvergent for X if and only if $S_{\sigma\mathcal{A}}$ is subconvergent. Different limit functions!
Subconvergence

- **Assumption:** X isotropic.

- Set $\sigma = \rho(X)$.

- Subconvergence depends only on σ!

Lemma. S_A is subconvergent for X if and only if $S_{\sigma A}$ is subconvergent. Different limit functions!

Lemma. [Factorization] S_A subconvergent relative to X then there are B, B' such that

$$\nabla X S_A = S_B \nabla \quad \text{resp.} \quad \nabla S_A = S_{B'} \nabla.$$
Differentiability

Theorem. Φ *stable,*
Differentiability

Theorem. \(\Phi \) stable,

1. \(\Phi \ast c = X \Phi \ast S \mathcal{A} c (\Xi) , \quad c \in \mathcal{L} , \)
Differentiability

Theorem. \(\Phi \) stable,

1. \(\Phi \ast c = X\Phi \ast S_A c (\Xi \cdot) , \quad c \in \mathcal{L} , \)

2. \(n = \dim \mathcal{E}_A \)
Differentiability

Theorem. Φ stable,

1. $\Phi \ast c = X\Phi \ast S_A c (\Xi \cdot), \quad c \in \mathcal{L},$

2. $n = \dim E_A = \dim \mathcal{R} \left(\hat{\Phi}(0) \right)$
Differentiability

Theorem. Φ stable,

1. $\Phi \ast c = X\Phi \ast S_{A}c (\Xi \cdot)$, \quad $c \in \mathcal{L}$,

2. $n = \dim E_{A} = \dim \mathcal{R} (\hat{\Phi}(0)) = \dim \mathcal{R} (\Phi)$.
Differentiability

Theorem. \(\Phi \) stable,

1. \(\Phi \ast c = X\Phi \ast S_{A}c (\Xi \cdot), \quad c \in \mathcal{L}, \)

2. \(n = \dim E_{A} = \dim \mathcal{R} \left(\hat{\Phi}(0) \right) = \dim \mathcal{R} (\Phi). \)

Additional condition!
Differentiability

Theorem. \(\Phi \) stable,

1. \(\Phi \ast c = \chi \Phi \ast S_A c (\Xi \cdot), \quad c \in \mathcal{L}, \)

2. \(n = \dim \mathbb{E}_A = \dim \mathcal{R} \left(\hat{\Phi}(0) \right) = \dim \mathcal{R} (\Phi). \)

Additional condition! Convergence for \(1 < n < N \).
Differentiability

Theorem. Φ stable,

1. $\Phi \ast c = X\Phi \ast S_A c (\Xi \cdot), \quad c \in \mathcal{L},$

2. $n = \dim E_A = \dim \mathcal{R} \left(\hat{\Phi}(0) \right) = \dim \mathcal{R} (\Phi).$

Additional condition! Convergence for $1 < n < N.$

Φ differentiable if and only if there exist B, V, Y such that

$$\nabla V, n S_A = S_B \nabla V, n$$
Differentiability

Theorem. Φ stable,

1. $Φ * c = XΦ * S_A c (Ξ)$, \quad $c \in \mathcal{L}$,

2. $n = \dim E_A = \dim \mathcal{R} \left(\hat{X}(0) \right) = \dim \mathcal{R} (Φ)$.

Additional condition! Convergence for $1 < n < N$.

Φ differentiable if and only if there exist B, V, Y such that

$$\nabla_{V,n} S_A = S_B \nabla_{V,n}$$

and S_B is subconvergent relative to $\nabla_{V,n} \mathcal{L}$ and normalized with Y.
Remarks

\[Y = P \left(X \otimes \Xi^T \right) P^{-1} \] for permutation \(P \).
Remarks

- \(Y = P (X \otimes \Xi^T) P^{-1} \) for permutation \(P \).
- \(Y \) again isotropic \(\Rightarrow \) iteration.
Remarks

□ \(Y = P \left(X \otimes \Xi^T \right) P^{-1} \) for permutation \(P \).

□ \(Y \) again isotropic \(\Rightarrow \) iteration.

□ All assumptions on \(\Phi \) carry over to \(\Psi = D\Phi \nabla^{-1} \).
Remarks

□ $Y = P (X \otimes \Xi^T) P^{-1}$ for permutation P.

□ Y again isotropic \Rightarrow iteration.

□ All assumptions on Φ carry over to $\Psi = D\Phi \nabla^{-1}$.

□ Criteria for higher order differentiability.
Remarks

- \[Y = P \left(X \otimes \Xi^T \right) P^{-1} \] for permutation \(P \).

- \(Y \) again isotropic \(\Rightarrow \) iteration.

- All assumptions on \(\Phi \) carry over to \(\Psi = D\Phi \nabla^{-1} \).

- Criteria for higher order differentiability.

- Phenomena and their origin:
Remarks

- $Y = P (X \otimes \Xi^T) P^{-1}$ for permutation P.
- Y again isotropic \Rightarrow iteration.
- All assumptions on Φ carry over to $\Psi = D\Phi \nabla^{-1}$.
- Criteria for higher order differentiability.
- Phenomena and their origin:
 - Matrix masks of increasing size \leftarrow multivariate.
Remarks

- \(\mathbf{Y} = \mathbf{P} (\mathbf{X} \otimes \Xi^T) \mathbf{P}^{-1} \) for permutation \(\mathbf{P} \).

- \(\mathbf{Y} \) again isotropic \(\Rightarrow \) iteration.

- All assumptions on \(\Phi \) carry over to \(\Psi = D\Phi \nabla^{-1} \).

- Criteria for higher order differentiability.

- Phenomena and their origin:
 - Matrix masks of increasing size \(\leftarrow \) multivariate.
 - “Adapted” difference operators \(\leftarrow \) matrix masks.
Remarks

□ $Y = P (X \otimes \Xi^T) P^{-1}$ for permutation P.

□ Y again isotropic \Rightarrow iteration.

□ All assumptions on Φ carry over to $\Psi = D\Phi \nabla^{-1}$.

□ Criteria for higher order differentiability.

□ Phenomena and their origin:
 ▶ Matrix masks of increasing size \Leftarrow multivariate.
 ▶ “Adapted” difference operators \Leftarrow matrix masks.
 ▶ Normalization, subconvergence \Leftarrow dilatation matrix Ξ.
Remarks

□ $Y = P \left(X \otimes \Xi^T \right) P^{-1}$ for permutation P.

□ Y again isotropic \Rightarrow iteration.

□ All assumptions on Φ carry over to $\Psi = D\Phi \nabla^{-1}$.

□ Criteria for higher order differentiability.

□ Phenomena and their origin:
 ▶ Matrix masks of increasing size \leftarrow multivariate.
 ▶ “Adapted” difference operators \leftarrow matrix masks.
 ▶ Normalization, subconvergence \leftarrow dilatation matrix Ξ.
 ▶ Restricted convergenz \leftarrow multivariate.
Conclusion

- Univariate → multivariate requires new concepts.
Conclusion

- Univariate \rightarrow multivariate requires new concepts.

- But: they come in naturally!
Conclusion

- Univariate → multivariate requires new concepts.

- But: they come in naturally!

- Hidden when “only” tensor products are considered.
Conclusion

- Univariate \rightarrow multivariate requires new concepts.
- **But:** they come in naturally!
- Hidden when “only” tensor products are considered.
- Difficult: construction of “smooth” wavelets.
Conclusion

- Univariate \rightarrow multivariate requires new concepts.

- But: they come in naturally!

- Hidden when “only” tensor products are considered.

- Difficult: construction of “smooth” wavelets.

- Little known for $s > 2$.

End of the story
Conclusion

- Univariate → multivariate requires new concepts.

- **But:** they come in naturally!

- Hidden when “only” tensor products are considered.

- Difficult: construction of “smooth” wavelets.

- Little known for $s > 2$. Applications?

End of the story
Conclusion

- Univariate \rightarrow multivariate requires new concepts.

- **But:** they come in naturally!

- Hidden when “only” tensor products are considered.

- Difficult: construction of “smooth” wavelets.

- Little known for $s > 2$. Applications?

- Light at the end of the tunnel?
Univariate \rightarrow multivariate requires new concepts.

But: they come in naturally!

Hidden when “only” tensor products are considered.

Difficult: construction of “smooth” wavelets.

Little known for $s > 2$. Applications?

Light at the end of the tunnel?