SEMINAIRE D'ANALYSE NUMERIQUE
Année universitaire 2010-2011
Lundi 29 novembre 14h30,
Marie BEAUDOUIN
(soutenance de thèse)
Analyse modale pour les coques minces en révolution.
Le sujet de cette thèse est l'étude du spectre de l'opérateur de Koiter sur des
coques minces en fonction de leur épaisseur. On se restreint au cas de coques minces
axisymétriques et encastrées. L'opérateur de Koiter se décompose en un opérateur
de membrane indépendant de l'épaisseur et un opérateur de flexion. Le spectre de
l'opérateur de Koiter est discret alors que celui de la membrane contient du spectre
essentiel.
En utilisant la symétrie axiale du problème, on décompose les opérateurs en fonction
de la fréquence angulaire k. Dans une démarche constructive, on cherche les solutions
du problème aux valeurs propres comme séries formelles en puissances inverses de k.
On obtient alors un théorème de réduction formelle général ramenant le problème à
l'étude d'un problème scalaire.
On s'intéresse ensuite au cas d'une coque cylindrique et on exhibe une famille
de quasimodes correspondant aux plus petites valeurs propres. Lorsque l'on rajoute
l'opérateur de flexion, on sélectionne alors un mode k dépendant de l'épaisseur et il
apparaît des couches limites. On exhibe également des quasimodes dans ce régime.
Des simulations numériques à l'aide de la librairie d'éléments finis Melina pour
l'opérateur de membrane et pour le modèle sous-jacent de Lamé ont justifié nos résultats
théoriques.