SEMINAIRE D'ANALYSE NUMERIQUE
Année universitaire 2010-2011


Vendredi 10 juin 2011 :  Sten MADEC   (Soutenance de thèse)
Hétérogénéité spatiale en dynamique des populations.

L'objet de cette thèse est l'étude mathématique et numérique d'un système de compétition de plusieurs espèces pour une ressource dans un milieu hétérogène. Lorsque le milieu est homogène, il est connu qu'un tel système, appelé système de chemostat, vérifie le principe d'exclusion compétitive : au plus une espèce peut survivre. Nous proposons deux modèles spatialement structurés et étudions le rôle de l'hétérogénéité spatiale dans les phénomènes de coexistence. Le premier modèle est un système d'équations matricielles et le second un système de réaction-diffusion. Notre première contribution est de montrer que les solutions du système de réaction-diffusion sont uniformément bornées en temps et en espace en norme L infini. Nous étudions ensuite le cas des petits taux de migration dans le modèle discret et montrons que la coexistence est possible. Dans le cas des grand taux de migration, nous montrons à l'aide du théorème de la variété centrale que pour chacun des deux modèles, le principe d'exclusion compétitive est vérifié. Nous construisons finalement des solutions stationnaires de coexistence pour deux espèces à l'aide d'une méthode de bifurcations globales. Cette construction nous amène à définir la notion de domaine de coexistence dans l'espace des paramètres. Dans les derniers chapitres, nous illustrons et étendons numériquement les résultats précédents. Nous montrons en particulier comment le domaine de coexistence dépend du taux de migration et de l'hétérogénéité spatiale.