Les trois premières parties présentent des résultats théoriques. Tout d'abord, par une approche variationnelle, on construit des états stationnaires pour le système de Vlasov-Manev et on montre leur stabilité orbitale. Ensuite, on prouve l'existence de solutions autosimilaires explosant en temps fini autour d'un état stationnaire pour le système dit de « Vlasov-Manev pur ». Enfin on démontre la stabilité orbitale d'une large classe d'états stationnaires pour le système de Vlasov-Poisson relativiste.
Ces résultats s'appuient sur de nouvelles méthodes utilisant la rigidité du flot. Celles-ci permettent notamment d'obtenir la séparation d'états stationnaires en évitant l'étude d'équations d'Euler-Lagrange non locales, de résoudre un problème variationnel avec une infinité de contraintes et de prouver la stabilité orbitale de solutions stationnaires non nécessairement obtenues de manière variationnelle.
Dans la quatrième et dernière partie, nous étudions numériquement l'équation de Vlasov-Poisson en coordonnées radiales. Après avoir choisi un système de variables adéquates, nous présentons des schémas numériques de différences finies conservant la masse et le Hamiltonien du système.