SEMINAIRE D'ANALYSE NUMERIQUE
Année universitaire 2013-2014


Vendredi 14 février 2014 :  Soutenance de thèse de Rania RAIS à 10h en salle 004-006
Couplage entre éléments finis et représentation intégrale pour les problèmes de diffraction acoustique et électromagnétique : analyse de convergence des méthodes de Krylov et méthodes multipôles rapides.

Le travail effectué dans cette thèse a consisté à analyser différents aspects mathématiques et numériques d'une stratégie de résolution des problèmes de propagation d'onde acoustique et électromagnétique en domaine extérieur. Nous nous intéressons plus particulièrement à la méthode de couplage entre éléments finis et représentation intégrale (CEFRI) où nous analysons un algorithme de résolution itérative par analogie avec une méthode de décomposition de domaine ainsi que l'utilisation de la méthode multipôles rapide (FMM). Le système à résoudre fait intervenir des opérateurs intégraux ce qui rend crucial le recours à des méthodes rapides telles que la FMM. L'analogie avec une méthode de décomposition de domaine s'obtient par extension au problème de Maxwell des résultats établis par F. Ben Belgacem et al. pour le problème de Helmholtz posé en domaine non borné. Pour cela, nous avons montré le lien entre la méthode CEFRI et la méthode de Schwarz avec recouvrement total pour la résolution du problème de Maxwell en domaine non borné. Cette relecture de la méthode CEFRI offre également une technique de préconditionnement pour les solveurs de Krylov et nous a permis d'avoir une idée préliminaire sur la convergence de ces méthodes. Ainsi, nous nous intéressons plutôt à des méthodes itératives rapides. Pour cela, nous avons mené une analyse théorique afin de montrer la convergence superlinéaire du GMRES dans une configuration sphérique. La validation de ces aspects a été réalisée par l'enrichissement de nombreux intégrands de la librairie éléments finis Mélina++, en C++.