SEMINAIRE D'ANALYSE NUMERIQUE
Année universitaire 2013-2014
Vendredi 23 mai 2014 :
Soutenance de thèse de Hamdi SAKLY
à 15h.
Opérateur intégral volumique en théorie de diffraction électromagnétique.
Le problème de diffraction électromagnétique gouverné par les équations de Maxwell admet une formulation équivalente par une équation intégrale volumique fortement singulière. Cette thèse a pour but d'examiner l'opérateur intégral qui décrit cette équation. La première partie de ce manuscrit porte sur l'étude de son spectre essentiel. Cette analyse est intéressante en vue d'obtenir les conditions nécessaires et suffisantes pour avoir l'unicité de solutions du problème surtout quand il s'agirait de la diffraction des ondes par des matériaux négatifs où les techniques classiques perdent leur utilité. Après avoir justifié le bon choix du cadre fonctionnel, nous étudions tout d'abord le cas où les paramètres caractéristiques du milieu à savoir la permittivité électrique et la perméabilité magnétique sont constants par morceaux avec discontinuité au travers du bord de la cible. Dans ce cadre, nous donnons une réponse complète à la question pour les domaines réguliers et Lipschitziens. Ensuite, et à l'aide d'une technique de localisation, nous donnons une extension de ces résultats dans le cas des paramètres réguliers par morceaux pour deux opérateurs intégraux, l'un qui correspond à la version diélectrique du problème et l'autre pour sa version magnétique. Nous terminons cette thèse par l'étude de la derivée de forme des opérateurs diélectrique et magnétique et nous en déduisons une nouvelle caractérisation de la dérivée de forme des solutions des deux problèmes de diffraction.