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Abstract
This work concerns the numerical finite element

computation, in the frequency domain, of the diffracted
wave produced by a defect (crack, inclusion, perturba-
tion of the boundaries etc..) located in an infinite elas-
tic plate. The Perfectly Matched Layers are used to
bound artificially the computational domain. An origi-
nal formulation is considered and implemented, whose
unknowns are the total field in the physical domain and
the diffracted one in the absorbing layers. For a homo-
geneous isotropic plate, the outgoing solution is well
selected, except for frequencies where some propaga-
tive modes have group and phase velocities of opposite
signs.

Introduction
We consider a 2D homogeneous isotropic elastic

plate (of thickness2h, densityρ and Laḿe’s coefficients
λ andµ) with a local perturbation of its free boundaries.
The perturbed (respectively unperturbed) domain is de-
noted byΩ (resp.Ω0). Our purpose is the computation
of the wave diffracted by the perturbation, when the in-
cident wave is supposed to be a propagative Lamb mode
(see for instance [12]):

uinc(x, y) = v(y)eiβx, (x, y) ∈ Ω0, β ∈ IR.

If ω > 0 denotes the pulsation (the terme−iωt will be
omitted in the following), the total displacement field
utot then satisfies :

{ −div σ(utot)− ω2ρutot = 0 in Ω,
σ(utot).n = 0 on∂Ω,

(1)

whereσ(u), the stress tensor, is related to the strain ten-
sorε(u) = 1/2(∇u +∇tu) by Hooke’s law:

σ(u) = λ div(u)Id + 2µε(u).

The diffracted wave is then defined inΩ ∩ Ω0 as

udif = utot − uinc

and has to satisfy an outgoing radiation condition. An
explicit expression of this condition can be derived from
the expansion ofudif on Lamb modes (see [7] for a
mathematical justification of this expansion). More pre-
cisely, on each side of the perturbation, this expansion
must involve only “outgoing” modes:

• an evanescent mode (β /∈ IR) is said to be outgoing
if =mβ > 0 for x → +∞ and=mβ < 0 for
x → −∞

• a propagative mode (β ∈ IR) is said to be outgoing
if its group velocity∂ω/∂β is positive forx →
+∞ and negative forx → −∞

In the following we will denote byu+
n (x, y) =

eiβnxv+
n (y) (resp.u−n (x, y) = e−iβnxv−n (y)) the right-

going modes (resp. leftgoing modes).
In order to solve the problem with finite elements,

one has to bound the computational domain. For sim-
ilar problems of scalar type, exact transparent bound-
ary conditions can be set on vertical artificial bound-
aries, these conditions, so-called Dirichlet-to-Neumann
or impedance conditions, being derived from the modal
decomposition of the diffracted field ([1]). This tech-
nique, whose only drawback is to be non-local (lead-
ing to partially full matrices), is unfortunately difficult
to extend to vectorial problems, as this one. Actually,
the well-suited operator to ensure the good properties
(completeness, orthogonality) of Lamb modes is not
the operator that relates the displacement to the nor-
mal stresses (cf [9] ). This is what has motivated us
to develop an alternative method, based on the use of
perfectly matched layers.

Perfectly matched layers
Perfectly Matched Layers (PMLs) were introduced

by Bérenger [3] in order to design efficient numerical
absorbing boundary conditions (more precisely absorb-
ing layers) for the computation of time-dependent so-
lutions of Maxwell’s equations in unbounded domains.
They have since been used for numerous applications,
mostly in the time domain [4], [10] but also for time-
harmonic wave-like equations [13], [6], [1].

The purpose of the method is to provide a ficti-
tious, absorbing medium, such that its interface with
the “physical” bounded domain does not produce any
reflection. Transposing B́erenger’s formulation in the
frequency domain from its original setting in the time
domain consists in making the following substitution in
the layers:

∂

∂x
−→ α

∂

∂x
, (2)

whereα is a complex number [4], [11], [5]. The op-
erators div andσ then become divα andσα in the lay-



ers. On the interfaces between the physical domain and
the absorbing layers, the solution must satisfy the con-
tinuity of the displacement and the continuity of the
generalized normal stresses, defined on the left (resp.
right) layer side asσα(u)nα wherenα = (α, 0)t (resp.
(−α, 0)t). For anyα, it can be easily shown that the
interface between the PML and the physical domain is
perfectly transparent. Moreover, it is essential for the
numerical purpose that transmitted waves decrease ex-
ponentially in the layers.

It is easy to check that the modes in the absorbing
layers are simply derived from the Lamb’s ones as:

u±n,α(x, y) = e±iβn,αxv±n (y), n ∈ IN, (3)

with

βn,α =
βn

α
.

The PML model corresponds to an absorbing layer if
it transforms all outgoing modes, especially the prop-
agative ones, into evanescent modes. This leads us to
look for values ofα such that=mβn,α > 0, ∀n ∈ IN.
Clearly the transformation

Sα : C→ C , z 7→ z

α

due to the change of variable used in the PML is a simi-
larity of ratio1/|α| and anglearg (1/α) around the ori-
gin in the complex plane. In most situations, propaga-
tive modes have phase and group velocities of the same
sign, so that for these modesβn > 0. In these cases, the
following requirements onα:

Re(α) > 0, Im(α) < 0, (4)

ensure that all outgoing propagative modes become
evanescent in the layers. Unfortunately, for some fre-
quencies there exist “inverse modes” which have phase
and group velocities of opposit sign, and thus become
unstable in the layers. In the time domain, these modes
have been proved to be responsible for the existence of
numerical instabilities [2]. For our problem which is set
in the frequency domain, inverse modes will not pro-
vide instabilities but they will lead to a bad selection of
the outgoing wave. This situation is therefore different
from the one studied in [1] where PMLs work even in
the presence of inverse modes.

Variational formulation
In practice, one has to bound the computational do-

main and layers are of finite lengthL.
We denote by:ΩL the truncated computational domain,
ΩL± the layers,Σ± the internal boundaries of the lay-
ers, ΣL± the external boundaries of the layers andΩb

the domain contained between the two interfacesΣ±

(see figure 1). The PMLs are most often presented to
solve diffraction problems with an internal source. In
the present case, with an incident field, it is not possible
to choose as unknown the total field (increasing in one
of the absorbing layers) while choosing the diffracted
field would lead to complicated source terms in the per-
turbed part of the waveguide. We propose an approach,
which consists in choosing as unknownu, the total field
u = utot in Ωb, and the diffracted fieldu = udif in ΩL±.
The variational formulation of the problem can then be
written as:





Findu such that[u]Σ± = ∓uinc and

∫

Ωb

(σ(u) : ε(v)− ω2u.v)dx+

+
1
α

∫

Ω+
L∪Ω−L

(σα(u) : εα(v)− ω2u.v)dx

=
∫

Σ+∪Σ−
σ(uinc)n.vdγ

for all v such that[v]Σ± = 0

(5)

wheren is the unit normal onΣ± exterior toΩb.

ΩL
− ΩL

+Ωb

LL

Σ− Σ+ ΣL
+ΣL

−

Figure 1: The truncated domainΩL.

Discretization
In order to approximate the solutionu of (5) by finite

elements, we introduce a triangular mesh of the domain
ΩL. The discretized problem consists in looking for
u ∈ V satisfying (5) for allv ∈ V , whereV is a finite
dimensional space composed of the displacement fields
which are continuous inΩL and polynomial functions
of degree 2 on each triangle. Using classical locally
supported basis functions, this leads to solve a matri-
cial linear system, where the matrix to be inverted is
large but very sparse. Again let us point out that even if
”Dirichlet-to-Neumann” like boundary conditions were
available, they would lead to partially full matrices.

The computations have been done by S. Mohamed
with the finite element libraryMÉLINA [8].

Numerical results
We consider a plate of steel whose thickness is

denoted by2h. The velocities of longitudinal and



transversal waves are given bycL = 5900ms−1 and
cT = 3100ms−1. All the computations are made with
a fixed mesh and for a frequency such thatωh/π =
4000ms−1. At this frequency, it can be shown that ex-
actly 5 modes can propagate in the plate : the three sym-
metric modes S0, S1 and S2, and the two antisymmetric
ones A0 and A1. For the sake of brevity, we will focus
on the symmetric ones.

At first the method has been validated in a simple
case: the physical domain is a part of the unperturbed
plate (0 < x < 35 and−15 < y < 15), extended
on the right by an absorbing layer (35 < x < 40 and
−15 < y < 15). The displacement of the mode S0
is imposed on the lateral boundary on the left (x = 0
and−15 < y < 15), so that the exact solution is the
mode S0. TheH1-norm relative error between the ex-
act and the approximated solutions is plotted on figure
2 as a function of the modulus of the parameterα, its
argument beeing fixed and equal to−π/4. This curve
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Figure 2: Error versus|α| for the 3 symmetric modes

presents typical features with a range of intermediate
values where the error is small (only due to the finite el-
ement approximation), while the error rapidly increases
for both small and large values of|α|. Indeed, for small
values of|α|, the diffracted field becomes strongly de-
creasing in the layers, and the mesh is too coarse for ap-
proximating this behavior. On the other hand, whenα
is too large, the diffracted field is not enough decreasing
in the layer, so that spurious reflexions are produced by
the truncation of the layer. These effects can be clearly
indentified when looking at the computed solution in
the layer, as shown on figure 3.

Then the method has been applied to compute the
diffraction due to a local deformation of the upper
boundary of the plate when the incident wave is the
propagative mode S0. The real part of the first compo-
nent of the incident, total and diffracted fields are rep-
resented in the physical domainΩb in figure 4.

Figure 3: Simulation of the S0 mode : Real part of the
first component of the solution. Top : an accurate value
of |α|, Middle: a too large|α|, Bottom: a too small|α|

Conclusion and perspectives

In most cases (no inverse propagative modes), PMLs
are a simple and efficient tool for selecting the outgoing
solution of the diffraction problem in an elastic plate.
For frequencies such that inverse propagative modes ex-
ist, PMLS work neither in the frequency domain (where
the outgoing solution is not well selected) nor in the
time domain where they are leading to numerical insta-
bilities. The treatment of such frequencies is an open
question.



Figure 4: Top: the incident field, Middle: the total
field, Bottom: the diffracted field
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[1] E. BÉCACHE, A.-S. BONNET-BEN DHIA AND

G. LEGENDRE, Perfectly matched layers for
the convected Helmholtz equation, to appear in
SINUM.
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