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Goal of the present study

Numerical schemes and asymptotic study for nonlinear
Schrödinger equations of the form

i∂tψ
ε(t , x) =

Hx

ε
ψε(t , x) + F

(
|ψε(t , x)|2

)
ψε(t , x),

where the Hamiltonian Hx is the harmonic oscillator (x ∈ R
d )

Hx = −1
2
∆x +

1
2
|x |2.

and F is a given nonlinear function.

Context: Bose-Einstein condensates

−→ Hx/ε represents strong confinement in x .

−→ nonlinear term describes bosons’ interactions .
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Goal of the present study (2)

References (in that context):
Bao, Markowich, Schmeiser, Weishäupl (M3AS, 2005),
Ben Abdallah, Méhats (JMPA, 2005),
Ben Abdallah, Méhats, Schmeiser, Weishäupl (SIAM, 2005).

See also, in the context of fluid mechanics:
Grenier (JMPA, 1997),
Schochet (JDE, 1994),
Métivier, Schochet (JDE 2003),

and, for other Schrödinger-like or Vlasov-like equations:
Bidégaray, Castella, Degond (DCDS 2004),
Castella, Degond, Goudon (JSP 2006).
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Rough analysis (and wrong approach)

−→ Linear part : Eigenvalues of Hx :

{En = n1 + · · · + nd +
d
2

; n = (n1, . . . ,nd) ∈ N
d},

Eigenfunctions: explicitely known χn(x)’s (n ∈ N
d ),

Hermite polynomial × Gaussian.

−→ Project
ψε(t , x) =

∑

n

ψε
n(t)χn(x),

and write, say if F (|ψ|2)ψ = |ψ|2ψ,

i∂tψ
ε
n(t) =

En

ε
ψε

n(t) +
∑

p,q,r

An,p,q,r ψ
ε
p(t)∗ ψε

q(t)ψε
r (t)

(
with An,p,q,r =

∫

Rd
ψε

p(t)∗ ψε
q(t)ψε

r (t)
)
.
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Rough analysis (and wrong approach) (2)

−→ Filter out the oscillatory term and introduce

φε
n(t , x) = exp

(
+it

En

ε

)
ψε(t , x).

It satisfies

i∂tφ
ε
n(t) =

∑

p,q,r

An,p,q,r exp
(

it
En + Ep − Eq − Er

ε

)
φε

p(t)∗ φε
q(t)φε

r (t).

−→ System of the form

∂tuε = G
(

t
ε
,uε

)
,

with G periodic (En’s are half-integers)

and uε = (φε
0, φ

ε
1, . . .) (infinite , nonlinearly coupled system).
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Rough analysis (and wrong approach) (3)
−→ Questions
• How to numerically average out the ODE

∂tuε = G
(

t
ε
,uε

)
?

Answer inspired by Chartier, Murua, Sanz-Serna (ODE’s).

• How to control the norms of uε, and that of the nonlinear
term G (i.e., typically φε and the sums

∑
p,q,r · · · : it is not clear

that the Sobolev smoothness
∑

n nα|φn|2 < +∞ implies
∑

n nα
∣∣∣
∑

p,q,r · · ·
∣∣∣
2
< +∞, because of the An,p,q,r ’s) ?

Answer inspired by Ben Abdallah, Castella, Méhats
(functional analytic framework).
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Right approach and analytic framework

−→ Avoid projecting on the χn’s and write directly (Ben
Abdallah, Castella, Méhats)

φε(t , x) = exp
(

+it
Hx

ε

)
ψε(t , x).

−→ It satisfies i∂tφ
ε(t , x) = G

(
t
ε
, φε(t , x)

)
,

where, for u = u(x) given, we have
(

F̃ (z) = F (|z|2) z
)

G
(

t
ε
,u

)
= exp

(
+it

Hx

ε

)
F̃

(
exp

(
−it

Hx

ε

)
u(x)

)



logo

Stroboscopic averaging for nonlinear Schr ödinger equations

Right approach and analytic framework (2)

Bounds on the nonlinear terms G(t/ε, φε) or F̃ (ψε) ?

When F ≡ 0, we have (take a large N ∈ N)

i∂tψ
ε =

Hx

ε
ψε

=⇒ ∂t

∥∥∥HN
x ψ

ε
∥∥∥

2

L2
= 2Re

〈
HN

x

(
−i

Hx

ε
ψε

)
, HN

x ψ
ε

〉

L2

= 0,

(Hx commutes with HN
x and Hx is self-adjoint)

=⇒
∥∥∥HN

x ψ
ε
∥∥∥

2

L2
≤ const.

while

∂t

∥∥∥∂N
x ψ

ε
∥∥∥

2

L2
= O

(
1
ε

)
=⇒ no uniform in ε bound on

∥∥∥∂N
x ψ

ε
∥∥∥

2

L2
.



logo

Stroboscopic averaging for nonlinear Schr ödinger equations

Right approach and analytic framework (3)

This is due to

∂t

∥∥∥∂N
x ψ

ε
∥∥∥

2

L2
= 2Re

〈
∂N

x

(
−i

Hx

ε
ψε

)
, ∂N

x ψ
ε

〉

L2

= 2Re

〈
∂N

x

(
−i

|x |2
ε
ψε

)
, ∂N

x ψ
ε

〉

L2

= O
(

1
ε

)
.

−→ Only a uniform bound on ‖HN
x ψ

ε‖L2 (and not on ‖∂N
x ψ

ε‖L2)
can be obtained in the general case.

−→ The ”good norm” is ‖u‖BN = ‖u‖L2 + ‖HN
x u‖L2 ,

instead of the Sobolev scale ‖u‖HN = ‖u‖L2 + ‖∂N
x u‖L2 .
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Right approach and analytic framework (4)

Note that :
∥∥∥HN

x φ
ε
∥∥∥

L2
=

∥∥∥∥HN
x exp

(
+it

Hx

ε

)
ψε

∥∥∥∥
L2

=

∥∥∥∥exp
(

+it
Hx

ε
HN

x

)
ψε

∥∥∥∥
L2

(commutation)

=
∥∥∥HN

x ψε
∥∥∥

L2
(self-adjointness)

Remaining question : we know (‖u‖HN := ‖u‖L2 + ‖∂N
x u‖L2)

∥∥∥F̃ (ψε)
∥∥∥

HN
≤ const. (‖ψε‖HN ) ,

yet is it true that (‖u‖BN := ‖u‖L2 + ‖HN
x u‖L2)

∥∥∥F̃ (ψε)
∥∥∥

BN
≤ const. (‖ψε‖BN ) ?
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Right approach and analytic framework (5)

Answer (Ben Abdallah, Castella, Méhats, see also Helffer, Nier,
and Bony, Chemin — requires Weyl-Hörmander calculus for
general Hamiltonians):
Yes because of the following

Theorem ( Hx = −∆x + |x |2)

For any N, we have the equivalence of norms

‖u‖L2 + ‖∂2N
x u‖L2 + ‖|x |2N u‖L2 ∼ ‖u‖L2 + ‖(−∂2

x + |x |2)N u‖L2

or, in other words

‖u‖L2 + ‖∂2N
x u‖L2 + ‖|x |2N u‖L2 ∼ ‖u‖BN .
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Right approach and analytic framework (6)

By standard nonlinear analysis (Gronwall + the above
nonlinear estimates on ‖F̃ (u)‖BN + standard fixed point in the
original PDE),

this immediately implies the existence of T0 > 0 such that

‖ψε(t , x)‖BN , ‖φε(t , x)‖BN ≤ const. (0 ≤ t ≤ T0),

and all nonlinear terms are well defined and uniformly bounded
in the space BN

−→ there remains to average out, in the space BN , the equation

i∂tφ
ε(t , x) = G

(
t
ε
, φε(t , x)

)
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Highly oscillatory ODE’s

Problems of the form

ẏ =
dy
dt

= f (y , t/ε), y(0) = y0,

where :

ε is a small parameter (the inverse of the frequency).

f is a smooth vector-field, 2π-periodic in t/ε.

Assumptions:

a clear and explicit separation of the time-scales

a periodic (and not only quasi-periodic at this stage)
dependence in the fast time
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Highly oscillatory ODE’s (2)

Appears in various forms:

“Standard” form in KAM theory

Two-scale expansions in quantum mechanics
(Wentzel-Kramers-Brillouin, 1926)

Magnus expansions (A. Iserles, 2002)

Modulated Fourier expansions (D. Cohen, E. Hairer and
Chr. Lubich, 2003)

Theory has been gradually improved:

Krylov and Bogoliubov (1934) : basic idea

Bogoliubov and Mitropolski (1958) : rigorous statement for
second order approximation and general scheme

Perko (1969) : almost complete theory with error estimates
for the periodic and quasi-periodic cases (see also the
book Sanders, Verhulst and Murdock, 2007)
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Highly oscillatory ODE’s (3)

Theorem (Perko, SIAM 1969 : Averaging of high-order)

Under a smoothness assumption on f and a non-resonance
condition on ω , given the system

{
y ′ = εf (y , θ) ∈ R

n, y(0) = y0,

θ′ = ω ∈ T
d , θ(0) = θ0,

there exists a transformation from R
n × T

d to R
n

y = U(Y , θ) = Y + εu1(Y , θ) + . . .+ εk uk(Y , θ)

such that

Y ′ = εF1(Y ) + . . .+ εkFk (Y ),Y (0) = ξ.

and
‖y(τ) − U(Y (τ), θ0 + τω)‖ ≤ Cεk for τ ≤ C/ε.
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Highly oscillatory ODE’s (4)

The functions ui (and thus Fi ) are not unique except F1

F̃1(Y ) = f (y , θ),

F̃j(Y , θ) =

j−1∑

k=1

[ 1
k!

∑

i1+...+ik=j−1

∂k f
∂yk

(
ui1, . . . ,uik

)
− ∂uk

∂Y
Fj−k

]
,

Fj(Y ) =
1

(2π)d

∫

Td
F̃j(Y , θ)dθ,

ω · ∂uj

∂θ
(Y , θ) = F̃j(Y , θ) − Fj(Y ).

For d = 1, one can impose uj(Y ,0) = 0: this is stroboscopic
averaging, in the sense that U(Y ,2kπ) = Y .
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An example

For f (y , τ) = 1 + cos(τ)y , we have

Φτ
τ0

(y0) = εeε sin(τ)

∫ τ

τ0

e−ε sin(s)ds + eε(sin(τ)−sin(τ0))y0,

so that

Φτ0+2π
τ0

(y0) = 2πενeε sin(τ0) + y0, ν =
1

2π

∫ 2π

0
e−ε sin(τ)dτ.

We see that
(
Φτ0+2π

τ0

)k
(y0) coincides with the solution at points

τ = 2kπ of the differential equation
{

Y ′(τ) = ενeε sin(τ0)

Y (0) = y0
,

which happens to be the modified equation we are looking for.
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An example (2)

Example

0 2 4 6 8 10 12
1

1.2

1.4

1.6

1.8

2

2.2

2.4
Exact solutions versus their averaged versions

Time

y 
an

d 
Y

We search for a differential equation whose flow coincides at
times that are multiple of 2π with the flow of the
highly-oscillatory equation.
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B-series expansions

Mode-coloured B-series with time-dependent coefficients

Consider the rescaled system expanded in Fourier coefficients
{

y ′(τ) = ε
∑

k∈Z
eikτ fk (y), y(0) = y0

θ′(τ) = 1, θ(0) = θ0

where the fk ’s are the Fourier coefficients of f . Chartier, Murua
and Sanz-Serna [FOCM 2010] consider B-series of the form

y0 +
∑

u∈T

ε|u|
αu(τ)

σu
Fu(y0)

where

T is a set of mode-decorated trees.

Fu(y0) are associated derivatives of the fk ’s .

σu is a normalisation coefficient.

αu(τ) are coefficients defining the series.
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B-series expansions (2)

Tree Order σu Fu
k 1 1 fk

l
k

= [ k ]l 2 1 f ′l fk

m

lk
= [ k , l ]m 3 1 + δk ,l f ′′m(fk , fl )

[ l
k

]m = m
l

k

3 1 f ′mf ′l fk

Table: Mode-decorated trees and their associated coefficients
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B-series expansions (3)

Nota : The general procedure is described as in Chartier, Mur ua, Sanz-Serna, FOCM 2010

Construction of averaged vector field F from εf (y , τ):
1 Compute the B-series expansion of the exact solution

y(τ) = y0 +
∑

u∈T

ε|u|
αu(τ)

σu
Fu(y0)

2 Notice that αu(τ) = Pu(τ, θ)|θ=τ with Pu(τ, θ) =
∑

au
klτ

leikθ

3 Define averaged (or frozen) solution by ᾱu(τ) = Pu(τ,0)

Y (τ) = y0 +
∑

u∈T

ε|u|
ᾱu(τ)

σu
Fu(y0)

4 Define averaged vector field εF (Y , τ) such that
{

Y ′(τ) = εF (Y (τ), τ)
Y (0) = y0

5 Notice that F is autonomous and Hamiltonian as soon as
f is Hamiltonian.
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The averaged vector field is autonomous

The vector field corresponding to Y (τ) = Φ̄τ
τ0

(y0) writes

F (Y , τ) = (
∂Φ̄τ

τ0

∂τ
◦

(
Φ̄τ

τ0

)−1
)(Y ) =

∑

u∈T

ε|u|
β̄u(τ)

σu
Fu(Y )

where β̄(τ) = ᾱ−1(τ) ∗ ᾱ′(τ). Since Y (τj+k) =
(
Φτ0+2π

τ0

)j+k
(y0):

ᾱu(τj + τk ) = ᾱu(τk ) ∗ ᾱu(τj) = ᾱu(τj) ∗ ᾱu(τk ), j , k = 0,±1,±2, . . .

and by an interpolation argument

∀k , ∀ τ, ᾱu(τ + τk ) = ᾱu(τk ) ∗ ᾱu(τ).

Differentiating and taking the value at τ = 0 gives

∀k , ᾱ′(τk ) = ᾱ(τk ) ∗ ᾱ′(0),

so that by interpolation once again,

∀ τ, ᾱ′(τ) = ᾱ(τ) ∗ ᾱ′(0) i.e. ∀ τ, ᾱ−1(τ) ∗ ᾱ′(τ) = ᾱ′(0).
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The averaged vector field is Hamiltonian

If α is symplectic, the B-series ᾱ remains symplectic

Since αu(τ) = Pu(τ, τ) with Pu(τ, θ) :=
∑

au
lkτ

leikθ we see that
the symplecticity relation

∀τ, αu◦v (τ) + αv◦u(τ) = αu(τ)αv (τ)

implies

∀τ,∀θ, Pu◦v (τ, θ) + Pv◦u(τ, θ) = Pu(τ, θ)Pv (τ, θ)

and hence

∀τ, ᾱu◦v (τ) + ᾱv◦u(τ) = ᾱu(τ)ᾱv (τ)
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The numerical scheme

The idea is to solve the averaged equation at two levels, in the
spirit of Heterogeneous Multiscale Methods:

Approximate the averaged vector field F by central
differences of the form

F (Y ) ≈ 1
4π

(Φ2π
0 (Y ) − Φ−2π

0 (Y ))

with a numerical method with constant stepsizes
(micro-steps ).

Solve the averaged equation by a numerical method with
possibly variable stepsizes (macro-steps)

Nota : in the formulation ẏ = f (t/ε, y), this gives rise to
micro-steps δt ≪ ε alternating with macro-steps ε≪ ∆t ≪ 1.



logo

Stroboscopic averaging for nonlinear Schr ödinger equations

The numerical scheme (2)

Example (Van Der Pol oscillator)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
Van Der Pol oscillator

p

q

{
q̇ = p
ṗ = −q + ε(1 − q2)p

which, after the change of variables

q = cos(t)x + sin(t)y

p = − sin(t)x + cos(t)y

writes


ẋ = − sin (t) ε

`

1 − (cos (t) x + sin (t) y)2
´

(− sin (t) x + cos (t) y)

ẏ = cos (t) ε

`

1 − (cos (t) x + sin (t) y)2´

(− sin (t) x + cos (t) y)
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The numerical scheme (3)

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

q

p

Van Der Pol oscillator

Figure: Exact solution (red) and numerical solution obtained by SAM
(blue)
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The numerical scheme : references
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stroboscopic numerical method for highly oscillatory
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multi-frequency case, in preparation.
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Application to the considered nonlinear Schrödinger equations

Theorem
The Perko formulae apply in our context, when conveniently
rephrased in the BN spaces:

one can define functions uj , Yj as in Perko, and averaging can
be performed at any order, to provided φε

K (t , x)’s such that
φε

K (t , x) = φε(t , x) + O(εK ) in BN , whenever 0 ≤ t ≤ T0.

Numerical counterpart
The above described numerical scheme, when conveniently
adapted, provides the following results.
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Application to the considered nonlinear Schrödinger equations (2)

In the case of

i∂tψ
ε =

1
ε
∆x + |ψε|2 ψε

x ∈ [0,1] with periodic boundary conditions, t ∈ [0,
√

2/2π].
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Figure: direct Strang splitting (order 2 if ε ∼ 1)
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Application to the considered nonlinear Schrödinger equations (3)
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Application to the considered nonlinear Schrödinger equations (4)
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Figure: direct order 6 splitting
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Application to the considered nonlinear Schrödinger equations (5)
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Figure: Stroboscopic averaging – constant numerical cost, various
values of ε
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Application to the considered nonlinear Schrödinger equations (6)
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Figure: Energy conservation.
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Application to the considered nonlinear Schrödinger equations (7)
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Figure: Evolution of modes 1 to 8 in the cubic NLS: modes 1 and 5
feed mode 7 (and only this mode).
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