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Spectral asymptotics as h! 0

1:
Agmon estimates
for "hi � " < 0
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��jRd + U
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< "S and the nonlinearity of the problem

give an asymptotic bound for the �rst energy level:
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3:
Apriori estimate on the
charge density (Nier 1993)
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� C unif. w.r.t. h

4:
Distributional
convergence

: 1
"hi�"<0

j	hi j2 ! �(� � x0)

� As a consequence of (3) and (4),
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f("hi ) = 0 8"hi
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Asymptotic estimates at the quantum scale

With the notation

Ahi = h2�d f("hi )
:
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Lemma 2 The coe¢ cients Ahi�N0 show the following properties:

� In dimension d = 3: the set
n
Ahi�N0; h 2 (0; h0]

o
is uniformly bounded w.r.t. h:

� In dimension d = 2: the set
n
ln 1hA

h
i�N0; h 2 (0; h0]

o
is uniformly bounded w.r.t. h:

where (0; h0] is a suitable right neighbourhood of the origin.
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Lemma 3 For i � N0, " 2 (�kUkL1 ; 0) and h 2 (0; h0], with h0 > 0 small
enough, the following properties hold:

� In dimension d = 3, the family
�
1
h1"hi<"

~	hi

�
h2(0;h0]

is relatively compact in Lp(R3)

with p 2 [1; 6).
� In dimension d = 2, the family

�
1
h1"hi<"

~	hi

�
h2(0;h0]

is relatively compact in Lp(R2)

with p 2 [1;+1).

� Hence in both cases
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is relatively compact in L1\L2(Rd) .

Sketch of the proof:
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For any bounded domain B � Rd
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Theorem 1 (The 3-D case) Let d = 3 and let V h (resp. ~V h) solve the Schrodinger-
Poisson problem at the classical (resp. quantum) scale.
� The potential at the classical scale, V h, converges strongly to 0 in H10(
)


V h




H10(
)
= O(h1=2)

� By �xing the threshold "S associated with f , there exists a unique (A;W ) 2 (0;+1)�
_H1(R3;R) such that "S = inf �(��+ U +W ) and(

[��+ U +W ] � = "S � ; with � 2 H2(R3); k�kL2(R3) = 1 ;
��W = A j�j2 :

� With above notations, the potential at the quantum scale ~V h satis�es
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= 0 :

� There exists h1 > 0 such that the eigenvalues "hi are larger than "S and f("
h
i ) = 0 for

all i � 2 and all h � h1 . The particle density at the quantum scale, h�1
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Strategy of the proof:
1: A consequence of the Lemmas 2 and 3: out of any in�nite subset S � (0; h0] with
0 2 S, we can extract D � S, 0 2 D, such that
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Ahi � 0; lim
h!0
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Let G be the Green function of ��
and assume f 2 L1 \ L2(R3) !

8<: G � f 2 C1(R3)
kG � fkL1(R3) � C

�
kfkL1(R3) + kfkL2(R3)

�
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2: N1 = max
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For i = 1:

~	h1 � 0 a.e. on 
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� Note: The unique non negative eigenvector coincides with the fundamental mode

) N1 = 1 and the limit problem writes as:
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3: We consider the functional Ka : _H1(R3;R)! R

Ka(W ) =
1

2

Z
R3
(rW )2 dx� a "(W ) ; a � 0

"(W ) = inf �(��R3 + U +W );
h
��R3 + U +W

i
 (W ) = "(W ) (W )

� The maps "(W ),  (W ) are continuous in _H1(R3;R) and analytic in the open set

S =
n
W 2 _H1(R3;R) ; "(W ) < 0

o
The map Ka(W ) admits a unique global minimum Wa. If Wa 2 S

)
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Proposition The map a 7! "a is continuous in R+. Moreover it is analytic and strictly in-
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n
a 2 R+ j "a < 0

o
.

Sketch of the proof: We exploit the convexity of Ka(W ) and
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Theorem 2 (The 2-D case) Let d = 2 and let V h (resp. ~V h) solve the Schrodinger-
Poisson problem at the classical (resp. quantum) scale.
� The potential at the classical scale, V h, converges strongly to 0 in H10(
)
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� Take the threshold "S associated with f and e1 = inf �(��+U) and set � = "S�e1.
Then the potential ~V h at the quantum scale satis�es for any �xed � > 0:
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� There exists h1 > 0 such that the eigenvalues "hi are larger than "S and f("
h
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all i � 2 and all h � h1 . The particle density at the quantum scale,
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Strategy of the proof: Let us introduce the rescaled density rh

Bhi = jlnhj Ahi ; rh =
X
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Out of any S � (0; h0], 0 2 �S, we can extract a subset D � S, 0 2 �D, such that
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� Our strategy consistes into a direct estimate of the L1-norm of ~V h in regions of size
O(jlnhj). Let Rh = � (jlnhj) with � > 0. Under the assumption (III), we prove that

lim
h!0
h2D




 ~V h � �




L1(B

Rh
)
= 0; � =

1

2�

X
i�N0

Bi




 ~V h



L1(R2nB

Rh
)
� C and




V h



H10(
)

= O
 

1

jlnhj

!
8h 2 D



� Next, using Agmon estimates and the standard inequality:

jjujjL2(R2)d(�; �(H)) � jj(H � �)ujjL2(R2)
we prove:
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